Tealeaves.Singlesorted.Classes.Functor

This file implements the ordinary endofunctors of functional programming.

From Tealeaves Require Export
     Util.Prelude
     Singlesorted.Theory.Product.

Import Product.Notations.
#[local] Open Scope tealeaves_scope.

#[local] Notation "F ⇒ G" := (forall A : Type, F A -> G A) (at level 50) : tealeaves_scope.

Endofunctors

Section Functor_operations.

  Context
    (F : Type -> Type).

  Class Fmap : Type :=
    fmap : forall {A B : Type} (f : A -> B), F A -> F B.

End Functor_operations.

Section Functor_class.

  Context
    (F : Type -> Type)
    `{Fmap F}.

  Class Functor : Prop :=
    { fun_fmap_id :
        `(fmap F (@id A) = @id (F A));
      fun_fmap_fmap : forall {A B C : Type} {f : A -> B} {g : B -> C},
          fmap F g fmap F f = fmap F (g f);
    }.

End Functor_class.

Natural transformations

Section natural_transformation_class.

  Context
    `{Functor F}
    `{Functor G}.

  Class Natural (ϕ : F G) :=
    { natural_src : Functor F;
      natural_tgt : Functor G;
      natural : forall `(f : A -> B),
          fmap G f ϕ A = ϕ B fmap F f
    }.

End natural_transformation_class.

Monoid structure on endofunctors

Before defining Monad it is necessary to define the monoidal structure on endofunctors, i.e. to prove the identity operation is an endofunctor and that these are closed under composition. It is not necessary here to prove the full monoid laws.
Instance Fmap_I : Fmap (fun A => A) :=
  fun (A B : Type) (f : A -> B) => f.

#[program] Instance Functor_I : Functor (fun A => A).

It is sometimes necessary to explicitly unfold compose in the type arguments of a compose in order to rewrite with naturality laws without using Set Keyed Unification.
Ltac unfold_compose_in_compose :=
  repeat match goal with
         | |- context [@compose ?A ?B ?C] =>
           let A' := eval unfold compose in A in
               let B' := eval unfold compose in B in
                   let C' := eval unfold compose in C in
                       progress (change (@compose A B C) with (@compose A' B' C'))
         end.

Section Functor_composition.

  Context
    `{Functor F}
    `{Functor G}.

  #[global] Instance Fmap_compose : Fmap (G F) :=
    fun A B f => fmap G (fmap F f).

  #[global] Program Instance Functor_compose : Functor (G F).

  Solve Obligations with
      (intros; unfold transparent tcs;
      unfold_compose_in_compose;
      (rewrite (fun_fmap_id F), (fun_fmap_id G)) +
      (rewrite (fun_fmap_fmap G), (fun_fmap_fmap F));
      reflexivity).

End Functor_composition.

Tensorial strength

All endofunctors in the CoC have a tensorial strength with respect to the Cartesian product of types. This is just the operation that distributes a pairing over an endofunctor. See https://ncatlab.org/nlab/show/tensorial+strength
Section tensor_strength.

  Context
    (F : Type -> Type)
    `{Functor F}.

  Definition strength {A B} : forall (p : A * F B), F (A * B) :=
    fun '(a, t) => fmap F (pair a) t.

  Lemma strength_1 {A B} : forall (a : A) (x : F B),
      strength (a, x) = fmap F (pair a) x.
  Proof.
    reflexivity.
  Qed.

  Lemma strength_2 {A B} : forall (a : A),
      (strength pair a : F B -> F (A * B)) = fmap F (pair a).
  Proof.
    reflexivity.
  Qed.

  Lemma strength_nat `{f : A1 -> B1} `{g : A2 -> B2} : forall (p : A1 * F A2),
      strength (map_tensor f (fmap F g) p) = fmap F (map_tensor f g) (strength p).
  Proof.
    intros [a t]. cbn.
    compose near t on left.
    compose near t on right.
    now rewrite 2(fun_fmap_fmap F).
  Qed.

  Corollary strength_nat_l {A B C} {f : A -> B} : forall (p : A * F C),
      fmap F (map_fst f) (strength p) = strength (map_fst f p).
  Proof.
    intros. unfold map_fst.
    rewrite <- strength_nat.
    now rewrite (fun_fmap_id F).
  Qed.

  Corollary strength_nat_r {A B C} {f : A -> B} : forall (p : C * F A),
      fmap F (map_snd f) (strength p) = strength (map_snd (fmap F f) p).
  Proof.
    intros. unfold map_snd.
    now rewrite <- strength_nat.
  Qed.

  Lemma strength_triangle {A} : forall (p : unit * F A),
      fmap F (left_unitor) (strength p) = left_unitor p.
  Proof.
    intros [u t]. destruct u. cbn.
    compose_near t. rewrite (fun_fmap_fmap F).
    now rewrite (fun_fmap_id F).
  Qed.

  Lemma strength_assoc {A B C} :
    fmap F α (@strength (A * B) C) = strength map_snd strength α.
  Proof.
    ext [[? ?] t]. unfold strength, compose. cbn.
    compose_near t. do 2 rewrite (fun_fmap_fmap F).
    reflexivity.
  Qed.

End tensor_strength.

Notations

Module Notations.
  Notation "F ⇒ G" := (forall A : Type, F A -> G A) (at level 50) : tealeaves_scope.
  Notation "'σ'":= (strength) : tealeaves_scope.
End Notations.