This file contains additional abstract theory for decorated functors, such as their characterization as certain kinds of co-modules.

From Tealeaves Require Import

Import Functor.Notations.
Import Monoid.Notations.
#[local] Open Scope tealeaves_scope.

A decorated functor is precisely a right comodule of prod W

This context is declared so that RightComodule uses the reader/writer comonad rather than an opaque one.

Decorated monads in terms of homomorphisms

Section DecoratedMonad_characterization.

    `{Monad T} `{Decorate W T} `{Monoid W}
    `{! DecoratedFunctor W T}.

ret T commutes with decoration if and only if dec T maps ret T to ret (T ∘ W)
  Lemma dec_ret_iff {A} :
    (dec T ret T = ret T dec (fun x => x) (A:=A)) <->
    (dec T ret T = ret (T prod W) (A:=A)).
  Proof with auto.

join T commutes with decoration if and only if dec T maps join T to join (T ∘ prod W) of dec T ∘ fmap T (dec T) (in other words iff dec T commutes with join).
  Lemma dec_join_iff {A} :
    `(dec T join T = join T dec (T T) (A := A)) <->
    `(dec T join T = join (T prod W) dec T fmap T (dec T (A:=A))).
    enough (Heq : join T dec (A := A) (T T)
                  = join (T prod W) dec T fmap T (dec T))
      by (split; intro hyp; now rewrite hyp).
    unfold_ops @Join_Beck @Decorate_compose @BeckDistribution_strength.
    repeat reassociate <-. fequal. fequal.
    rewrite (natural (ϕ := @join T _)).
    unfold_ops @Fmap_compose. reassociate -> on right.
    now unfold_compose_in_compose; rewrite (fun_fmap_fmap T).

  Theorem decorated_monad_compatibility_spec :
    Monad_Hom T (T prod W) (@dec W T _) <->
    DecoratePreservingTransformation (@ret T _) /\
    DecoratePreservingTransformation (@join T _).
  Proof with auto.
    - introv mhom. inverts mhom. inverts mhom_domain. split.
      + constructor...
        introv. symmetry. rewrite dec_ret_iff. apply mhom_ret.
      + constructor...
        introv. symmetry. rewrite dec_join_iff. apply mhom_join.
    - intros [h1 h2]. inverts h1. inverts h2.
      constructor; try typeclasses eauto.
      + introv. rewrite <- dec_ret_iff...
      + introv. rewrite <- dec_join_iff...

  Theorem decorated_monad_spec :
    DecoratedMonad W T <-> Monad_Hom T (T prod W) (@dec W T _).
  Proof with try typeclasses eauto.
    rewrite decorated_monad_compatibility_spec.
    split; intro hyp.
    - inversion hyp. constructor...
      + constructor... intros. now rewrite dmon_ret.
      + constructor... intros. now rewrite dmon_join.
    - destruct hyp as [hyp1 hyp2]. constructor...
      + intros. inversion hyp1. now rewrite dectrans_commute.
      + intros. inversion hyp2. now rewrite <- dectrans_commute.

End DecoratedMonad_characterization.

Pushing decorations through a monoid homomorphism

If a functor is readable by a monoid, it is readable by any target of a homomorphism from that monoid too.
Section DecoratedFunctor_monoid_homomorphism.

    `{Monoid_Morphism Wsrc Wtgt ϕ}
    `{DecoratedFunctor Wsrc F}.

  Instance Decorate_homomorphism :
    Decorate Wtgt F := fun A => fmap F (map_fst ϕ) dec F.

  Lemma Natural_read_morphism : Natural (@dec Wtgt F _).
    - typeclasses eauto.
    - typeclasses eauto.
    - intros. unfold_ops @Decorate_homomorphism.
      unfold_ops @Fmap_compose.
      reassociate <- on left.
      rewrite (fun_fmap_fmap F).
      rewrite (product_fmap_commute).
      rewrite <- (fun_fmap_fmap F).
      reassociate -> on left.
      change (fmap F (fmap (prod Wsrc) f)) with
          (fmap (F prod Wsrc) f).
      now rewrite (natural (ϕ := @dec Wsrc F _ )).

End DecoratedFunctor_monoid_homomorphism.