Built with Alectryon, running Coq+SerAPI v8.16.0+0.16.3. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use instead of Ctrl.
(** This files contains metatheorems for the locally nameless variables
 that closely parallel those of LNgen. *)
From Tealeaves.Backends.Common Require Export
  Names AtomSet.
From Tealeaves.Misc Require Export
  NaturalNumbers.
From Tealeaves.Classes Require Import
  Kleisli.Theory.DecoratedTraversableMonad.
From Tealeaves.Theory Require Import
  DecoratedTraversableMonad.

Import Coq.Init.Nat. (* Notation <? *)

Import
  List.ListNotations
  Product.Notations
  Monoid.Notations
  Batch.Notations
  Subset.Notations
  Kleisli.Monad.Notations
  Kleisli.Comonad.Notations
  ContainerFunctor.Notations
  DecoratedMonad.Notations
  DecoratedContainerFunctor.Notations
  DecoratedTraversableMonad.Notations
  AtomSet.Notations.

#[local] Generalizable Variables T U.

(** * Deriving All Other Typeclass Instances from a DTM *)
(******************************************************************************)
Import UsefulInstances.

(** * Locally nameless variables *)
(******************************************************************************)
Inductive LN :=
| Fr: atom -> LN
| Bd: nat -> LN.


forall l1 l2 : LN, {l1 = l2} + {l1 <> l2}

forall l1 l2 : LN, {l1 = l2} + {l1 <> l2}
l1, l2: LN
n, n0: atom

{n = n0} + {n <> n0}
l1, l2: LN
n, n0: nat
{n = n0} + {n <> n0}
l1, l2: LN
n, n0: atom

{n = n0} + {n <> n0}
compare values n and n0; auto.
l1, l2: LN
n, n0: nat

{n = n0} + {n <> n0}
compare values n and n0; auto. Qed. #[export] Instance EqDec_LN: EquivDec.EqDec LN eq := eq_dec_LN. (** [compare_to_atom] is an induction principle for leaves that splits the <<Fr x>> case into subcases <<x = y>> and <<x <> y>> for some user-specified atom <<y>>. *)

forall (x : atom) (l : LN) (P : LN -> Prop), P (Fr x) -> (forall a : atom, a <> x -> P (Fr a)) -> (forall n : nat, P (Bd n)) -> P l

forall (x : atom) (l : LN) (P : LN -> Prop), P (Fr x) -> (forall a : atom, a <> x -> P (Fr a)) -> (forall n : nat, P (Bd n)) -> P l
x: atom
l: LN
P: LN -> Prop
case1: P (Fr x)
case2: forall a : atom, a <> x -> P (Fr a)
case3: forall n : nat, P (Bd n)

P l
x, n: atom
P: LN -> Prop
case1: P (Fr x)
case2: forall a : atom, a <> x -> P (Fr a)
case3: forall n : nat, P (Bd n)

P (Fr n)
x: atom
n: nat
P: LN -> Prop
case1: P (Fr x)
case2: forall a : atom, a <> x -> P (Fr a)
case3: forall n : nat, P (Bd n)
P (Bd n)
x, n: atom
P: LN -> Prop
case1: P (Fr x)
case2: forall a : atom, a <> x -> P (Fr a)
case3: forall n : nat, P (Bd n)

P (Fr n)
x, n: atom
P: LN -> Prop
case1: P (Fr x)
case2: forall a : atom, a <> x -> P (Fr a)
case3: forall n : nat, P (Bd n)
DESTR_NEQ: x <> n
DESTR_NEQs: n <> x

P (Fr n)
auto.
x: atom
n: nat
P: LN -> Prop
case1: P (Fr x)
case2: forall a : atom, a <> x -> P (Fr a)
case3: forall n : nat, P (Bd n)

P (Bd n)
auto. Qed. Tactic Notation "compare" constr(l) "to" "atom" constr(x) := (induction l using (compare_to_atom x)). (** * Locally nameless operations *) (******************************************************************************) (** ** Localized operations *) (******************************************************************************) Section locally_nameless_local_operations. Context `{Return T}. #[local] Arguments ret (T)%function_scope {Return} {A}%type_scope _. Definition free_loc: LN -> list atom := fun l => match l with | Fr x => cons x List.nil | _ => List.nil end. Definition subst_loc (x: atom) (u: T LN): LN -> T LN := fun l => match l with | Fr y => if x == y then u else ret T (Fr y) | Bd n => ret T (Bd n) end. Definition open_loc (u: T LN): nat * LN -> T LN := fun p => match p with | (w, l) => match l with | Fr x => ret T (Fr x) | Bd n => match Nat.compare n w with | Gt => ret T (Bd (n - 1)) | Eq => u | Lt => ret T (Bd n) end end end. Definition is_opened: nat * LN -> Prop := fun p => match p with | (ctx, l) => match l with | Fr y => False | Bd n => n = ctx end end. Definition close_loc (x: atom ): nat * LN -> LN := fun p => match p with | (w, l) => match l with | Fr y => if x == y then Bd w else Fr y | Bd n => match n ?= w with | Gt => Bd (S n) | Eq => Bd (S n) | Lt => Bd n end end end. (** The argument <<n>> is appended the context---to define local closure we will take <<n = 0>>, but we can also consider more notions like ``local closure within a gap of 1 binder,'' which is useful for backend reasoning. **) Definition lc_loc (gap: nat): nat * LN -> Prop := fun p => match p with | (w, l) => match l with | Fr x => True | Bd n => n < w + gap end end. Definition lcb_loc (gap: nat): nat * LN -> bool := fun p => match p with | (w, l) => match l with | Fr x => true | Bd n => n <? w + gap end end. Definition level_loc: nat * LN -> nat := fun p => match p with | (w, l) => match l with | Fr x => 0 | Bd n => n + 1 - w end end. End locally_nameless_local_operations. (** ** Lifted Operations *) (******************************************************************************) Section locally_nameless_operations. Context `{Return_T: Return T} `{Map_U: Map U} `{Bind_TU: Bind T U} `{Traverse_U: Traverse U} `{Mapd_U: Mapd nat U} `{Bindt_TU: Bindt T U} `{Bindd_U: Bindd nat T U} `{Mapdt_U: Mapdt nat U} `{Binddt_TU: Binddt nat T U}. Definition open (u: T LN): U LN -> U LN := bindd (open_loc u). Definition close x: U LN -> U LN := mapd (close_loc x). Definition subst x (u: T LN): U LN -> U LN := bind (subst_loc x u). Definition free: U LN -> list atom := mapReduce free_loc. Definition FV: U LN -> AtomSet.t := AtomSet.atoms ○ free. Definition LCnb (gap: nat): U LN -> bool := mapdReduce (lcb_loc gap). Definition LCb: U LN -> bool := LCnb 0. Definition LCn (gap: nat): U LN -> Prop := Forall_ctx (lc_loc gap). Definition LC: U LN -> Prop := LCn 0. Definition level: U LN -> nat := mapdReduce (op := Monoid_op_max) (unit := Monoid_unit_max) level_loc. Definition scoped: U LN -> AtomSet.t -> Prop := fun t γ => FV t ⊆ γ. End locally_nameless_operations. (** ** Operation Notations *) (******************************************************************************) Module OpNotations. Notation "t '{ x ~> u }" := (subst x u t) (at level 35). Notation "t ' ( u )" := (open u t) (at level 35, format "t ' ( u )" ). Notation "' [ x ] t" := (close x t) (at level 35, format "' [ x ] t" ). End OpNotations. Import OpNotations. Section test_notations. Context `{DecoratedTraversableMonad nat T}. Context (t: T LN) (u: T LN) (x: atom) (n: nat).
u '{ x ~> t} : T LN
u '(t) : T LN
'[x] u : T LN
End test_notations. (** * Some Tactics *) (******************************************************************************) Create HintDb tea_local. Tactic Notation "unfold_monoid" := repeat unfold monoid_op, Monoid_op_plus, monoid_unit, Monoid_unit_zero in *. Tactic Notation "unfold_lia" := unfold_monoid; lia. (** * Basic principles and lemmas *) (******************************************************************************) Section locally_nameless_basic_principles. Import Notations. (* Context `{Return_T: Return T} `{Binddt_TT: Binddt nat T T} `{Binddt_TU: Binddt nat T U} `{Monad_inst: ! DecoratedTraversableMonad nat T} `{Module_inst: ! DecoratedTraversableRightPreModule nat T U (unit := Monoid_unit_zero) (op := Monoid_op_plus)}. *) Context `{Return_T: Return T} `{Map_T: Map T} `{Bind_TT: Bind T T} `{Traverse_T: Traverse T} `{Mapd_T: Mapd nat T} `{Bindt_TT: Bindt T T} `{Bindd_T: Bindd nat T} `{Mapdt_T: Mapdt nat T} `{Binddt_TT: Binddt nat T T} `{! Compat_Map_Binddt nat T T} `{! Compat_Bind_Binddt nat T T} `{! Compat_Traverse_Binddt nat T T} `{! Compat_Mapd_Binddt nat T T} `{! Compat_Bindt_Binddt nat T T} `{! Compat_Bindd_Binddt nat T T} `{! Compat_Mapdt_Binddt nat T T}. Context `{Map_U: Map U} `{Bind_TU: Bind T U} `{Traverse_U: Traverse U} `{Mapd_U: Mapd nat U} `{Bindt_TU: Bindt T U} `{Bindd_TU: Bindd nat T U} `{Mapdt_U: Mapdt nat U} `{Binddt_TU: Binddt nat T U} `{! Compat_Map_Binddt nat T U} `{! Compat_Bind_Binddt nat T U} `{! Compat_Traverse_Binddt nat T U} `{! Compat_Mapd_Binddt nat T U} `{! Compat_Bindt_Binddt nat T U} `{! Compat_Bindd_Binddt nat T U} `{! Compat_Mapdt_Binddt nat T U}. Context `{Monad_inst: ! DecoratedTraversableMonad nat T} `{Module_inst: ! DecoratedTraversableRightPreModule nat T U (unit := Monoid_unit_zero) (op := Monoid_op_plus)}. Implicit Types (l: LN) (n: nat) (t: U LN) (x: atom). (** ** Local closure spec *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall gap : nat, LCn gap = (fun t => forall (w : nat) l, (w, l) ∈d t -> lc_loc gap (w, l))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall gap : nat, LCn gap = (fun t => forall (w : nat) l, (w, l) ∈d t -> lc_loc gap (w, l))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat

LCn gap = (fun t => forall (w : nat) l, (w, l) ∈d t -> lc_loc gap (w, l))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN

LCn gap t = (forall (w : nat) l, (w, l) ∈d t -> lc_loc gap (w, l))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN

LCn gap t <-> (forall (w : nat) l, (w, l) ∈d t -> lc_loc gap (w, l))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN

Forall_ctx (lc_loc gap) t <-> (forall (w : nat) l, (w, l) ∈d t -> lc_loc gap (w, l))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN

(forall (e : nat) (a : LN), (e, a) ∈d t -> lc_loc gap (e, a)) <-> (forall (w : nat) l, (w, l) ∈d t -> lc_loc gap (w, l))
reflexivity. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

LC = (fun t => forall (w : nat) l, (w, l) ∈d t -> lc_loc 0 (w, l))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

LC = (fun t => forall (w : nat) l, (w, l) ∈d t -> lc_loc 0 (w, l))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN

LC t = (forall (w : nat) l, (w, l) ∈d t -> lc_loc 0 (w, l))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN

LCn 0 t = (forall (w : nat) l, (w, l) ∈d t -> lc_loc 0 (w, l))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN

(forall (w : nat) l, (w, l) ∈d t -> lc_loc 0 (w, l)) = (forall (w : nat) l, (w, l) ∈d t -> lc_loc 0 (w, l))
reflexivity. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (gap gap' w : nat) l, gap <= gap' -> lc_loc gap (w, l) -> lc_loc gap' (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (gap gap' w : nat) l, gap <= gap' -> lc_loc gap (w, l) -> lc_loc gap' (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (gap gap' w : nat) l, gap <= gap' -> match l with | Fr _ => True | Bd n => n < w + gap end -> match l with | Fr _ => True | Bd n => n < w + gap' end
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (gap gap' w : nat) l, gap <= gap' -> match l with | Fr _ => True | Bd n => n < w + gap end -> match l with | Fr _ => True | Bd n => n < w + gap' end
destruct l; lia. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (gap gap' : nat) t, gap <= gap' -> LCn gap t -> LCn gap' t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (gap gap' : nat) t, gap <= gap' -> LCn gap t -> LCn gap' t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap, gap': nat
t: U LN
Hineq: gap <= gap'

LCn gap t -> LCn gap' t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap, gap': nat
t: U LN
Hineq: gap <= gap'
H: forall (w : nat) l, (w, l) ∈d t -> lc_loc gap (w, l)
w: nat
l: LN
H0: (w, l) ∈d t

lc_loc gap' (w, l)
apply (lc_loc_mono gap); auto. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t (w n : nat), (w, Bd n) ∈d t -> n < w + level t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t (w n : nat), (w, Bd n) ∈d t -> n < w + level t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
w, n: nat
H: (w, Bd n) ∈d t

n < w + level t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
w, n: nat
H: (w, Bd n) ∈d t
H0: n + 1 - w <= level t

n < w + level t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
w, n: nat
H: (w, Bd n) ∈d t
n + 1 - w <= level t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
w, n: nat
H: (w, Bd n) ∈d t

n + 1 - w <= level t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
w, n: nat
H: (w, Bd n) ∈d t

level_loc (w, Bd n) <= level t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
w, n: nat
H: (w, Bd n) ∈d t

level_loc (w, Bd n) <= mapdReduce level_loc t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
w, n: nat
H: (w, Bd n) ∈d t

(w, Bd n) ∈d t
assumption. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t, LCn (level t) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t, LCn (level t) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN

LCn (level t) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN

forall (w : nat) l, (w, l) ∈d t -> lc_loc (level t) (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
w: nat
l: LN
H: (w, l) ∈d t

lc_loc (level t) (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
w: nat
l: LN
H: (w, l) ∈d t

match l with | Fr _ => True | Bd n => n < w + level t end
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
w: nat
n: atom
H: (w, Fr n) ∈d t

True
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
w, n: nat
H: (w, Bd n) ∈d t
n < w + level t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
w: nat
n: atom
H: (w, Fr n) ∈d t

True
trivial.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
w, n: nat
H: (w, Bd n) ∈d t

n < w + level t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
w, n: nat
H: (w, Bd n) ∈d t

n < w + level t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
w, n: nat
H: (w, Bd n) ∈d t

(w, Bd n) ∈d t
auto. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (gap : nat) t, level t <= gap -> LCn gap t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (gap : nat) t, level t <= gap -> LCn gap t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
H: level t <= gap

LCn gap t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
H: level t <= gap

level t <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
H: level t <= gap
LCn (level t) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
H: level t <= gap

LCn (level t) t
apply level2. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (gap : nat) t, LCn gap t -> level t <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (gap : nat) t, LCn gap t -> level t <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
hyp: LCn gap t

level t <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
hyp: Forall_ctx (lc_loc gap) t

level t <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
hyp: mapdReduce (lc_loc gap) t

level t <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
hyp: (mapReduce (lc_loc gap) ∘ toctxlist) t

level t <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
hyp: (mapReduce (lc_loc gap) ∘ toctxlist) t

mapdReduce level_loc t <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
hyp: (mapReduce (lc_loc gap) ∘ toctxlist) t

(mapReduce level_loc ∘ toctxlist) t <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
hyp: mapReduce (lc_loc gap) (toctxlist t)

mapReduce level_loc (toctxlist t) <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
hyp: mapReduce (lc_loc gap) []

mapReduce level_loc [] <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
a: nat * LN
e: list (nat * LN)
hyp: mapReduce (lc_loc gap) (a :: e)
IHe: mapReduce (lc_loc gap) e -> mapReduce level_loc e <= gap
mapReduce level_loc (a :: e) <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
hyp: mapReduce (lc_loc gap) []

mapReduce level_loc [] <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
hyp: mapReduce (lc_loc gap) []

0 <= gap
lia.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
a: nat * LN
e: list (nat * LN)
hyp: mapReduce (lc_loc gap) (a :: e)
IHe: mapReduce (lc_loc gap) e -> mapReduce level_loc e <= gap

mapReduce level_loc (a :: e) <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
a: nat * LN
e: list (nat * LN)
hyp: mapReduce (lc_loc gap) (a :: e)
IHe: mapReduce (lc_loc gap) e -> mapReduce level_loc e <= gap

level_loc a ● mapReduce level_loc e <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
a: nat * LN
e: list (nat * LN)
hyp: mapReduce_list (lc_loc gap) (a :: e)
IHe: mapReduce (lc_loc gap) e -> mapReduce level_loc e <= gap

level_loc a ● mapReduce level_loc e <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
a: nat * LN
e: list (nat * LN)
hyp: lc_loc gap a ● mapReduce_list (lc_loc gap) e
IHe: mapReduce (lc_loc gap) e -> mapReduce level_loc e <= gap

level_loc a ● mapReduce level_loc e <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
a: nat * LN
e: list (nat * LN)
hyp: lc_loc gap a ● mapReduce (lc_loc gap) e
IHe: mapReduce (lc_loc gap) e -> mapReduce level_loc e <= gap

level_loc a ● mapReduce level_loc e <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
a: nat * LN
e: list (nat * LN)
H: lc_loc gap a
H0: mapReduce (lc_loc gap) e
IHe: mapReduce (lc_loc gap) e -> mapReduce level_loc e <= gap

level_loc a ● mapReduce level_loc e <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
a: nat * LN
e: list (nat * LN)
H: lc_loc gap a
H0: mapReduce (lc_loc gap) e
IHe: mapReduce (lc_loc gap) e -> mapReduce level_loc e <= gap

level_loc a <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
a: nat * LN
e: list (nat * LN)
H: lc_loc gap a
H0: mapReduce (lc_loc gap) e
IHe: mapReduce (lc_loc gap) e -> mapReduce level_loc e <= gap
mapReduce level_loc e <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
a: nat * LN
e: list (nat * LN)
H: lc_loc gap a
H0: mapReduce (lc_loc gap) e
IHe: mapReduce (lc_loc gap) e -> mapReduce level_loc e <= gap

level_loc a <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
n: nat
l: LN
e: list (nat * LN)
H: lc_loc gap (n, l)
H0: mapReduce (lc_loc gap) e
IHe: mapReduce (lc_loc gap) e -> mapReduce level_loc e <= gap

level_loc (n, l) <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
n: nat
l: LN
e: list (nat * LN)
H: lc_loc gap (n, l)
H0: mapReduce (lc_loc gap) e
IHe: mapReduce (lc_loc gap) e -> mapReduce level_loc e <= gap

match l with | Fr _ => 0 | Bd n0 => n0 + 1 - n end <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
n: nat
l: LN
e: list (nat * LN)
H: match l with | Fr _ => True | Bd n0 => n0 < n + gap end
H0: mapReduce (lc_loc gap) e
IHe: mapReduce (lc_loc gap) e -> mapReduce level_loc e <= gap

match l with | Fr _ => 0 | Bd n0 => n0 + 1 - n end <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
n: nat
n0: atom
e: list (nat * LN)
H: True
H0: mapReduce (lc_loc gap) e
IHe: mapReduce (lc_loc gap) e -> mapReduce level_loc e <= gap

0 <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
n, n0: nat
e: list (nat * LN)
H: n0 < n + gap
H0: mapReduce (lc_loc gap) e
IHe: mapReduce (lc_loc gap) e -> mapReduce level_loc e <= gap
n0 + 1 - n <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
n: nat
n0: atom
e: list (nat * LN)
H: True
H0: mapReduce (lc_loc gap) e
IHe: mapReduce (lc_loc gap) e -> mapReduce level_loc e <= gap

0 <= gap
lia.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
n, n0: nat
e: list (nat * LN)
H: n0 < n + gap
H0: mapReduce (lc_loc gap) e
IHe: mapReduce (lc_loc gap) e -> mapReduce level_loc e <= gap

n0 + 1 - n <= gap
lia.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
a: nat * LN
e: list (nat * LN)
H: lc_loc gap a
H0: mapReduce (lc_loc gap) e
IHe: mapReduce (lc_loc gap) e -> mapReduce level_loc e <= gap

mapReduce level_loc e <= gap
auto. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (gap : nat) t, LCn gap t <-> level t <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (gap : nat) t, LCn gap t <-> level t <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN

LCn gap t <-> level t <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN

LCn gap t -> level t <= gap
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN
level t <= gap -> LCn gap t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN

LCn gap t -> level t <= gap
apply level4.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN

level t <= gap -> LCn gap t
apply level3. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

nat -> forall t, LC t <-> level t = 0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

nat -> forall t, LC t <-> level t = 0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN

LC t <-> level t = 0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN

LCn 0 t <-> level t = 0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
gap: nat
t: U LN

level t <= 0 <-> level t = 0
lia. Qed. (** ** Reasoning principles for proving equalities *) (******************************************************************************) (** *** <<open>> *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t (u1 u2 : T LN), (forall (w : nat) l, (w, l) ∈d t -> open_loc u1 (w, l) = open_loc u2 (w, l)) -> t '(u1) = t '(u2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t (u1 u2 : T LN), (forall (w : nat) l, (w, l) ∈d t -> open_loc u1 (w, l) = open_loc u2 (w, l)) -> t '(u1) = t '(u2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u1, u2: T LN
H: forall (w : nat) l, (w, l) ∈d t -> open_loc u1 (w, l) = open_loc u2 (w, l)

t '(u1) = t '(u2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u1, u2: T LN
H: forall (w : nat) l, (w, l) ∈d t -> open_loc u1 (w, l) = open_loc u2 (w, l)

bindd (open_loc u1) t = bindd (open_loc u2) t
now apply bindd_respectful. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t (u : T LN), (forall (w : nat) l, (w, l) ∈d t -> open_loc u (w, l) = ret l) -> t '(u) = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t (u : T LN), (forall (w : nat) l, (w, l) ∈d t -> open_loc u (w, l) = ret l) -> t '(u) = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
H: forall (w : nat) l, (w, l) ∈d t -> open_loc u (w, l) = ret l

t '(u) = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
H: forall (w : nat) l, (w, l) ∈d t -> open_loc u (w, l) = ret l

bindd (open_loc u) t = t
now apply bindd_respectful_id. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall l (u : T LN), ret l '(u) = open_loc u (0, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall l (u : T LN), ret l '(u) = open_loc u (0, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
u: T LN

ret l '(u) = open_loc u (0, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
u: T LN

bindd (open_loc u) (ret l) = open_loc u (0, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
u: T LN

(bindd (open_loc u) ∘ ret) l = open_loc u (0, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
u: T LN

(open_loc u ∘ ret) l = open_loc u (0, l)
reflexivity. Qed. (** *** <<close>> *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t (x y : atom), (forall (w : nat) l, (w, l) ∈d t -> close_loc x (w, l) = close_loc y (w, l)) -> '[x] t = '[y] t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t (x y : atom), (forall (w : nat) l, (w, l) ∈d t -> close_loc x (w, l) = close_loc y (w, l)) -> '[x] t = '[y] t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom
H: forall (w : nat) l, (w, l) ∈d t -> close_loc x (w, l) = close_loc y (w, l)

'[x] t = '[y] t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom
H: forall (w : nat) l, (w, l) ∈d t -> close_loc x (w, l) = close_loc y (w, l)

mapd (close_loc x) t = mapd (close_loc y) t
now apply mapd_respectful. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x, (forall (w : nat) l, (w, l) ∈d t -> close_loc x (w, l) = l) -> '[x] t = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x, (forall (w : nat) l, (w, l) ∈d t -> close_loc x (w, l) = l) -> '[x] t = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
H: forall (w : nat) l, (w, l) ∈d t -> close_loc x (w, l) = l

'[x] t = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
H: forall (w : nat) l, (w, l) ∈d t -> close_loc x (w, l) = l

mapd (close_loc x) t = t
now apply mapd_respectful_id. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall l x, '[x] ret l = ret (close_loc x (0, l))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall l x, '[x] ret l = ret (close_loc x (0, l))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
x: atom

'[x] ret l = ret (close_loc x (0, l))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
x: atom

mapd (close_loc x) (ret l) = ret (close_loc x (0, l))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
x: atom

(mapd (close_loc x) ∘ ret) l = ret (close_loc x (0, l))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
x: atom

(ret ∘ close_loc x ∘ ret) l = ret (close_loc x (0, l))
reflexivity. Qed. (** *** <<subst>> *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t (x y : atom) (u1 u2 : T LN), (forall l, l ∈ t -> subst_loc x u1 l = subst_loc y u2 l) -> t '{ x ~> u1} = t '{ y ~> u2}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t (x y : atom) (u1 u2 : T LN), (forall l, l ∈ t -> subst_loc x u1 l = subst_loc y u2 l) -> t '{ x ~> u1} = t '{ y ~> u2}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom
u1, u2: T LN
H: forall l, l ∈ t -> subst_loc x u1 l = subst_loc y u2 l

t '{ x ~> u1} = t '{ y ~> u2}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom
u1, u2: T LN
H: forall l, l ∈ t -> subst_loc x u1 l = subst_loc y u2 l

bind (subst_loc x u1) t = bind (subst_loc y u2) t
now apply bind_respectful. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x (u : T LN), (forall l, l ∈ t -> subst_loc x u l = ret l) -> t '{ x ~> u} = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x (u : T LN), (forall l, l ∈ t -> subst_loc x u l = ret l) -> t '{ x ~> u} = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
u: T LN
H: forall l, l ∈ t -> subst_loc x u l = ret l

t '{ x ~> u} = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
u: T LN
H: forall l, l ∈ t -> subst_loc x u l = ret l

bind (subst_loc x u) t = t
now apply mod_bind_respectful_id. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x l (u : T LN), ret l '{ x ~> u} = subst_loc x u l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x l (u : T LN), ret l '{ x ~> u} = subst_loc x u l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
l: LN
u: T LN

ret l '{ x ~> u} = subst_loc x u l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
l: LN
u: T LN

bind (subst_loc x u) (ret l) = subst_loc x u l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
l: LN
u: T LN

(bind (subst_loc x u) ∘ ret) l = subst_loc x u l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
l: LN
u: T LN

subst_loc x u l = subst_loc x u l
reflexivity. Qed. (** ** Occurrence analysis lemmas *) (******************************************************************************) (** *** <<open>> *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall l n (u : T LN) t, (n, l) ∈d t '(u) <-> (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d open_loc u (n1, l1) /\ n = n1 ● n2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall l n (u : T LN) t, (n, l) ∈d t '(u) <-> (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d open_loc u (n1, l1) /\ n = n1 ● n2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
n: nat
u: T LN
t: U LN

(n, l) ∈d t '(u) <-> (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d open_loc u (n1, l1) /\ n = n1 ● n2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
n: nat
u: T LN
t: U LN

(n, l) ∈d bindd (open_loc u) t <-> (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d open_loc u (n1, l1) /\ n = n1 ● n2)
now rewrite ind_bindd_iff'. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall l (u : T LN) t, l ∈ t '(u) <-> (exists n1 l1, (n1, l1) ∈d t /\ l ∈ open_loc u (n1, l1))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall l (u : T LN) t, l ∈ t '(u) <-> (exists n1 l1, (n1, l1) ∈d t /\ l ∈ open_loc u (n1, l1))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
u: T LN
t: U LN

l ∈ t '(u) <-> (exists n1 l1, (n1, l1) ∈d t /\ l ∈ open_loc u (n1, l1))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
u: T LN
t: U LN

l ∈ bindd (open_loc u) t <-> (exists n1 l1, (n1, l1) ∈d t /\ l ∈ open_loc u (n1, l1))
now rewrite in_bindd_iff. Qed. (** *** <<close>> *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall l n x t, (n, l) ∈d '[x] t <-> (exists l1, (n, l1) ∈d t /\ close_loc x (n, l1) = l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall l n x t, (n, l) ∈d '[x] t <-> (exists l1, (n, l1) ∈d t /\ close_loc x (n, l1) = l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
n: nat
x: atom
t: U LN

(n, l) ∈d '[x] t <-> (exists l1, (n, l1) ∈d t /\ close_loc x (n, l1) = l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
n: nat
x: atom
t: U LN

(n, l) ∈d mapd (close_loc x) t <-> (exists l1, (n, l1) ∈d t /\ close_loc x (n, l1) = l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
n: nat
x: atom
t: U LN

(exists a : LN, (n, a) ∈d t /\ close_loc x (n, a) = l) <-> (exists l1, (n, l1) ∈d t /\ close_loc x (n, l1) = l)
easy. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall l x t, l ∈ '[x] t <-> (exists n l1, (n, l1) ∈d t /\ close_loc x (n, l1) = l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall l x t, l ∈ '[x] t <-> (exists n l1, (n, l1) ∈d t /\ close_loc x (n, l1) = l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
x: atom
t: U LN

l ∈ '[x] t <-> (exists n l1, (n, l1) ∈d t /\ close_loc x (n, l1) = l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
x: atom
t: U LN

l ∈ mapd (close_loc x) t <-> (exists n l1, (n, l1) ∈d t /\ close_loc x (n, l1) = l)
now rewrite in_mapd_iff. Qed. (** *** <<subst>> *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall n l (u : T LN) t x, (n, l) ∈d t '{ x ~> u} <-> (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d subst_loc x u l1 /\ n = n1 ● n2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall n l (u : T LN) t x, (n, l) ∈d t '{ x ~> u} <-> (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d subst_loc x u l1 /\ n = n1 ● n2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
l: LN
u: T LN
t: U LN
x: atom

(n, l) ∈d t '{ x ~> u} <-> (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d subst_loc x u l1 /\ n = n1 ● n2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
l: LN
u: T LN
t: U LN
x: atom

(n, l) ∈d bind (subst_loc x u) t <-> (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d subst_loc x u l1 /\ n = n1 ● n2)
now rewrite ind_bind_iff'. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall l (u : T LN) t x, l ∈ t '{ x ~> u} <-> (exists l1, l1 ∈ t /\ l ∈ subst_loc x u l1)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall l (u : T LN) t x, l ∈ t '{ x ~> u} <-> (exists l1, l1 ∈ t /\ l ∈ subst_loc x u l1)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
u: T LN
t: U LN
x: atom

l ∈ t '{ x ~> u} <-> (exists l1, l1 ∈ t /\ l ∈ subst_loc x u l1)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
u: T LN
t: U LN
x: atom

l ∈ bind (subst_loc x u) t <-> (exists l1, l1 ∈ t /\ l ∈ subst_loc x u l1)
now rewrite mod_in_bind_iff. Qed. End locally_nameless_basic_principles. (** * Utilities for reasoning at the leaves *) (******************************************************************************) Section locally_nameless_utilities. Context `{Return_T: Return T} `{Map_T: Map T} `{Bind_TT: Bind T T} `{Traverse_T: Traverse T} `{Mapd_T: Mapd nat T} `{Bindt_TT: Bindt T T} `{Bindd_T: Bindd nat T} `{Mapdt_T: Mapdt nat T} `{Binddt_TT: Binddt nat T T} `{! Compat_Map_Binddt nat T T} `{! Compat_Bind_Binddt nat T T} `{! Compat_Traverse_Binddt nat T T} `{! Compat_Mapd_Binddt nat T T} `{! Compat_Bindt_Binddt nat T T} `{! Compat_Bindd_Binddt nat T T} `{! Compat_Mapdt_Binddt nat T T}. Context `{Map_U: Map U} `{Bind_TU: Bind T U} `{Traverse_U: Traverse U} `{Mapd_U: Mapd nat U} `{Bindt_TU: Bindt T U} `{Bindd_TU: Bindd nat T U} `{Mapdt_U: Mapdt nat U} `{Binddt_TU: Binddt nat T U} `{! Compat_Map_Binddt nat T U} `{! Compat_Bind_Binddt nat T U} `{! Compat_Traverse_Binddt nat T U} `{! Compat_Mapd_Binddt nat T U} `{! Compat_Bindt_Binddt nat T U} `{! Compat_Bindd_Binddt nat T U} `{! Compat_Mapdt_Binddt nat T U}. Context `{Monad_inst: ! DecoratedTraversableMonad nat T} `{Module_inst: ! DecoratedTraversableRightPreModule nat T U (unit := Monoid_unit_zero) (op := Monoid_op_plus)}. Import Notations. (** ** (In)equalities between leaves *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x y : atom, Fr x = Fr y <-> x = y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x y : atom, Fr x = Fr y <-> x = y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom

Fr x = Fr y <-> x = y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
hyp: Fr x = Fr y

x = y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
hyp: x = y
Fr x = Fr y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
hyp: x = y

Fr x = Fr y
now subst. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x y : atom, Fr x <> Fr y <-> x <> y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x y : atom, Fr x <> Fr y <-> x <> y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom

Fr x <> Fr y <-> x <> y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
hyp: x = y

Fr x = Fr y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
hyp: Fr x = Fr y
x = y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
hyp: Fr x = Fr y

x = y
now injection hyp. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x y : atom, x <> y -> Fr x <> Fr y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x y : atom, x <> y -> Fr x <> Fr y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
H: x <> y

Fr x <> Fr y
now rewrite Fr_injective. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (n : nat) (x : atom), (Bd n = Fr x) = False
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (n : nat) (x : atom), (Bd n = Fr x) = False
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
x: atom

(Bd n = Fr x) = False
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
x: atom

Bd n = Fr x -> False
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
x: atom
False -> Bd n = Fr x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
x: atom

False -> Bd n = Fr x
contradiction. Qed. (** ** [subst_loc] *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (u : T LN) (x : atom), subst_loc x u (Fr x) = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (u : T LN) (x : atom), subst_loc x u (Fr x) = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x: atom

subst_loc x u (Fr x) = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x: atom

(if x == x then u else ret (Fr x)) = u
now compare values x and x. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (u : T LN) (x : atom) (y : LN), Fr x = y -> subst_loc x u y = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (u : T LN) (x : atom) (y : LN), Fr x = y -> subst_loc x u y = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x: atom
y: LN
H: Fr x = y

subst_loc x u y = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x: atom

subst_loc x u (Fr x) = u
now rewrite subst_loc_eq. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (u : T LN) (x y : atom), x = y -> subst_loc x u (Fr y) = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (u : T LN) (x y : atom), x = y -> subst_loc x u (Fr y) = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x, y: atom
H: x = y

subst_loc x u (Fr y) = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
y: atom

subst_loc y u (Fr y) = u
now rewrite subst_loc_eq. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (u : T LN) (x y : atom), y <> x -> subst_loc x u (Fr y) = ret (Fr y)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (u : T LN) (x y : atom), y <> x -> subst_loc x u (Fr y) = ret (Fr y)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x, y: atom
H: y <> x

subst_loc x u (Fr y) = ret (Fr y)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x, y: atom
H: y <> x

(if x == y then u else ret (Fr y)) = ret (Fr y)
now compare values x and y. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (u : T LN) (x : atom) (n : nat), subst_loc x u (Bd n) = ret (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (u : T LN) (x : atom) (n : nat), subst_loc x u (Bd n) = ret (Bd n)
reflexivity. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (u : T LN) (l : LN) (x : atom), Fr x <> l -> subst_loc x u l = ret l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (u : T LN) (l : LN) (x : atom), Fr x <> l -> subst_loc x u l = ret l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
l: LN
x: atom
neq: Fr x <> l

subst_loc x u l = ret l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
l: LN
x: atom
neq: Fr x <> l

match l with | Fr y => if x == y then u else ret (Fr y) | Bd n => ret (Bd n) end = ret l
destruct l as [a|?]; [compare values x and a | reflexivity ]. Qed. (** ** [open_loc] *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (u : T LN) (w n : nat), n < w -> open_loc u (w, Bd n) = ret (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (u : T LN) (w n : nat), n < w -> open_loc u (w, Bd n) = ret (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w, n: nat
ineq: n < w

open_loc u (w, Bd n) = ret (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w, n: nat
ineq: n < w

match n ?= w with | Eq => u | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end = ret (Bd n)
compare naturals n and w. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (u : T LN) (n w : nat), n > w -> open_loc u (w, Bd n) = ret (Bd (n - 1))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (u : T LN) (n w : nat), n > w -> open_loc u (w, Bd n) = ret (Bd (n - 1))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
n, w: nat
ineq: n > w

open_loc u (w, Bd n) = ret (Bd (n - 1))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
n, w: nat
ineq: n > w

match n ?= w with | Eq => u | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end = ret (Bd (n - 1))
compare naturals n and w. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (w : nat) (u : T LN), open_loc u (w, Bd w) = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (w : nat) (u : T LN), open_loc u (w, Bd w) = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
u: T LN

open_loc u (w, Bd w) = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
u: T LN

match w ?= w with | Eq => u | Lt => ret (Bd w) | Gt => ret (Bd (w - 1)) end = u
compare naturals w and w. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (u : T LN) (w : nat) (x : atom), open_loc u (w, Fr x) = ret (Fr x)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (u : T LN) (w : nat) (x : atom), open_loc u (w, Fr x) = ret (Fr x)
reflexivity. Qed. (** ** [close_loc] *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (w : nat) (x y : atom), x <> y -> close_loc x (w, Fr y) = Fr y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (w : nat) (x y : atom), x <> y -> close_loc x (w, Fr y) = Fr y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
x, y: atom
H: x <> y

close_loc x (w, Fr y) = Fr y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
x, y: atom
H: x <> y

(if x == y then Bd w else Fr y) = Fr y
compare values x and y. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (w : nat) (x : atom), close_loc x (w, Fr x) = Bd w
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (w : nat) (x : atom), close_loc x (w, Fr x) = Bd w
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
x: atom

close_loc x (w, Fr x) = Bd w
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
x: atom

(if x == x then Bd w else Fr x) = Bd w
compare values x and x. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (x : atom) (w n : nat), n < w -> close_loc x (w, Bd n) = Bd n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (x : atom) (w n : nat), n < w -> close_loc x (w, Bd n) = Bd n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w, n: nat
H: n < w

close_loc x (w, Bd n) = Bd n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w, n: nat
H: n < w

match n ?= w with | Lt => Bd n | _ => Bd (S n) end = Bd n
compare naturals n and w. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (x : atom) (w n : nat), n >= w -> close_loc x (w, Bd n) = Bd (S n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (x : atom) (w n : nat), n >= w -> close_loc x (w, Bd n) = Bd (S n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w, n: nat
H: n >= w

close_loc x (w, Bd n) = Bd (S n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w, n: nat
H: n >= w

match n ?= w with | Lt => Bd n | _ => Bd (S n) end = Bd (S n)
compare naturals n and w. Qed. (** ** Local reasoning principles for LC *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall n m : nat, lc_loc n ⦿ m = lc_loc (n + m)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall n m : nat, lc_loc n ⦿ m = lc_loc (n + m)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n, m: nat

lc_loc n ⦿ m = lc_loc (n + m)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n, m, w: nat
l: LN

(lc_loc n ⦿ m) (w, l) = lc_loc (n + m) (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n, m, w: nat
n0: atom

(lc_loc n ⦿ m) (w, Fr n0) = lc_loc (n + m) (w, Fr n0)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n, m, w, n0: nat
(lc_loc n ⦿ m) (w, Bd n0) = lc_loc (n + m) (w, Bd n0)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n, m, w: nat
n0: atom

(lc_loc n ⦿ m) (w, Fr n0) = lc_loc (n + m) (w, Fr n0)
reflexivity.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n, m, w, n0: nat

(lc_loc n ⦿ m) (w, Bd n0) = lc_loc (n + m) (w, Bd n0)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n, m, w, n0: nat

(n0 < (m ● w) + n) = (n0 < w + (n + m))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n, m, w, n0: nat

(n0 < m + w + n) = (n0 < w + (n + m))
propext; lia. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall n : nat, lc_loc n ⦿ 1 = lc_loc (S n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall n : nat, lc_loc n ⦿ 1 = lc_loc (S n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat

lc_loc n ⦿ 1 = lc_loc (S n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat

lc_loc (n + 1) = lc_loc (S n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat

(n + 1)%nat = S n
lia. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall n w b : nat, lc_loc n (w, Bd b) = (b < w + n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall n w b : nat, lc_loc n (w, Bd b) = (b < w + n)
reflexivity. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall w b : nat, lc_loc 0 (w, Bd b) = (b < w)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall w b : nat, lc_loc 0 (w, Bd b) = (b < w)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w, b: nat

lc_loc 0 (w, Bd b) = (b < w)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w, b: nat

(b < w + 0) = (b < w)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w, b: nat

(b < w + 0) = (b < w)
propext; lia. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall b : nat, lc_loc 0 (0, Bd b) = False
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall b : nat, lc_loc 0 (0, Bd b) = False
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
b: nat

lc_loc 0 (0, Bd b) = False
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
b: nat

(b < 0) = False
propext; lia. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (n w : nat) (x : atom), lc_loc n (w, Fr x) = True
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (n w : nat) (x : atom), lc_loc n (w, Fr x) = True
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n, w: nat
x: atom

lc_loc n (w, Fr x) = True
reflexivity. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (X : Type) (x y : X), (x <> y) = (y <> x)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (X : Type) (x y : X), (x <> y) = (y <> x)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
X: Type
x, y: X

(x <> y) = (y <> x)
propext; intro hyp; contradict hyp; congruence. Qed. End locally_nameless_utilities. Create HintDb subst_local. #[export] Hint Rewrite @subst_loc_eq: subst_local. #[export] Hint Rewrite @subst_loc_eq_impl @subst_loc_fr_eq_impl @subst_loc_b @subst_loc_neq @subst_loc_fr_neq using solve [auto]: subst_local. Ltac simplify_subst_local := autorewrite with subst_local. #[export] Hint Rewrite @in_ret_iff @ind_ret_iff using typeclasses eauto: tea_local. #[export] Hint Rewrite Fr_injective Fr_injective_not_iff Bd_neq_Fr: tea_local. #[export] Hint Resolve Fr_injective_not: tea_local. #[export] Hint Rewrite @subst_loc_eq (*@subst_in_ret*) using typeclasses eauto: tea_local. #[export] Hint Rewrite @subst_loc_neq @subst_loc_b @subst_loc_fr_neq (*@subst_in_ret_neq*) using first [ typeclasses eauto | auto ]: tea_local. #[export] Hint Rewrite @open_loc_lt @open_loc_gt using first [ typeclasses eauto | auto ]: tea_local. #[export] Hint Rewrite @open_loc_eq @open_loc_atom using typeclasses eauto: tea_local. Tactic Notation "simpl_local" := (autorewrite* with tea_local). Ltac simplify_lc_loc := match goal with | |- context[lc_loc ?n ⦿ 1] => rewrite lc_loc_S | |- context[lc_loc ?n ⦿ ?m] => rewrite lc_loc_preincr | |- context[lc_loc ?n (?w, Fr ?x)] => rewrite lc_loc_Fr | |- context[lc_loc 0 (0, Bd ?b)] => rewrite lc_loc_00Bd | |- context[lc_loc 0 (?w, Bd ?b)] => rewrite lc_loc_0Bd | |- context[lc_loc ?n (?w, Bd ?b)] => rewrite lc_loc_nBd end. (** * Free variables *) (******************************************************************************) Section locally_nameless_free_variables. Import Notations. Context `{Return_T: Return T} `{Map_T: Map T} `{Bind_TT: Bind T T} `{Traverse_T: Traverse T} `{Mapd_T: Mapd nat T} `{Bindt_TT: Bindt T T} `{Bindd_T: Bindd nat T} `{Mapdt_T: Mapdt nat T} `{Binddt_TT: Binddt nat T T} `{! Compat_Map_Binddt nat T T} `{! Compat_Bind_Binddt nat T T} `{! Compat_Traverse_Binddt nat T T} `{! Compat_Mapd_Binddt nat T T} `{! Compat_Bindt_Binddt nat T T} `{! Compat_Bindd_Binddt nat T T} `{! Compat_Mapdt_Binddt nat T T}. Context `{Map_U: Map U} `{Bind_TU: Bind T U} `{Traverse_U: Traverse U} `{Mapd_U: Mapd nat U} `{Bindt_TU: Bindt T U} `{Bindd_TU: Bindd nat T U} `{Mapdt_U: Mapdt nat U} `{Binddt_TU: Binddt nat T U} `{! Compat_Map_Binddt nat T U} `{! Compat_Bind_Binddt nat T U} `{! Compat_Traverse_Binddt nat T U} `{! Compat_Mapd_Binddt nat T U} `{! Compat_Bindt_Binddt nat T U} `{! Compat_Bindd_Binddt nat T U} `{! Compat_Mapdt_Binddt nat T U}. Context `{Monad_inst: ! DecoratedTraversableMonad nat T} `{Module_inst: ! DecoratedTraversableRightPreModule nat T U (unit := Monoid_unit_zero) (op := Monoid_op_plus)}. Implicit Types (l: LN) (n: nat) (t: U LN) (x: atom). (** ** Free variables *) (******************************************************************************) (** *** Specifications for [free] and [FV] *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x l, x ∈ free_loc l = (Fr x = l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x l, x ∈ free_loc l = (Fr x = l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
l: LN

x ∈ free_loc l = (Fr x = l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, n: atom

x ∈ free_loc (Fr n) = (Fr x = Fr n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
n: nat
x ∈ free_loc (Bd n) = (Fr x = Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, n: atom

x ∈ free_loc (Fr n) = (Fr x = Fr n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, n: atom

(n = x \/ False) = (Fr x = Fr n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, n: atom

n = x \/ False -> Fr x = Fr n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, n: atom
Fr x = Fr n -> n = x \/ False
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, n: atom

n = x \/ False -> Fr x = Fr n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, n: atom
hyp: n = x

Fr x = Fr n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, n: atom
hyp: False
Fr x = Fr n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, n: atom
hyp: n = x

Fr x = Fr n
now subst.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, n: atom
hyp: False

Fr x = Fr n
contradiction.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, n: atom

Fr x = Fr n -> n = x \/ False
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, n: atom
H: Fr x = Fr n
H1: x = n

n = n \/ False
now left.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
n: nat

x ∈ free_loc (Bd n) = (Fr x = Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
n: nat

False = (Fr x = Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
n: nat

False -> Fr x = Bd n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
n: nat
Fr x = Bd n -> False
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
n: nat

False -> Fr x = Bd n
inversion 1.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
n: nat

Fr x = Bd n -> False
inversion 1. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x, x ∈ free t = Fr x ∈ t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x, x ∈ free t = Fr x ∈ t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom

x ∈ free t = Fr x ∈ t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom

x ∈ mapReduce free_loc t = Fr x ∈ t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom

(element_of x ∘ mapReduce free_loc) t = Fr x ∈ t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom

mapReduce (element_of x ∘ free_loc) t = Fr x ∈ t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom

mapReduce (element_of x ∘ free_loc) t = mapReduce {{Fr x}} t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom

element_of x ∘ free_loc = {{Fr x}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
l: LN

(element_of x ∘ free_loc) l = {{Fr x}} l
apply in_free_iff_local. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x, x ∈ free t <-> x `in` FV t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x, x ∈ free t <-> x `in` FV t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom

x ∈ free t <-> x `in` FV t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom

x ∈ free t <-> x `in` atoms (free t)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom

x ∈ free t <-> x ∈ free t
reflexivity. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (t : T LN) x, x ∈ free t = Fr x ∈ t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (t : T LN) x, x ∈ free t = Fr x ∈ t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: T LN
x: atom

x ∈ free t = Fr x ∈ t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: T LN
x: atom

x ∈ mapReduce free_loc t = Fr x ∈ t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: T LN
x: atom

(element_of x ∘ mapReduce free_loc) t = Fr x ∈ t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: T LN
x: atom

mapReduce (element_of x ∘ free_loc) t = Fr x ∈ t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: T LN
x: atom

mapReduce (element_of x ∘ free_loc) t = mapReduce {{Fr x}} t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: T LN
x: atom

element_of x ∘ free_loc = {{Fr x}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: T LN
x: atom
l: LN

(element_of x ∘ free_loc) l = {{Fr x}} l
apply in_free_iff_local. Qed. (** *** Opening *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (u : T LN) t x, x ∈ free (t '(u)) <-> (exists (w : nat) l1, (w, l1) ∈d t /\ x ∈ free (open_loc u (w, l1)))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (u : T LN) t x, x ∈ free (t '(u)) <-> (exists (w : nat) l1, (w, l1) ∈d t /\ x ∈ free (open_loc u (w, l1)))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom

x ∈ free (t '(u)) <-> (exists (w : nat) l1, (w, l1) ∈d t /\ x ∈ free (open_loc u (w, l1)))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom

Fr x ∈ t '(u) <-> (exists (w : nat) l1, (w, l1) ∈d t /\ x ∈ free (open_loc u (w, l1)))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom

Fr x ∈ t '(u) <-> (exists (w : nat) l1, (w, l1) ∈d t /\ Fr x ∈ open_loc u (w, l1))
now rewrite in_open_iff. Qed. (** *** Closing *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t (x y : atom), y ∈ free ('[x] t) <-> (exists (w : nat) l1, (w, l1) ∈d t /\ close_loc x (w, l1) = Fr y)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t (x y : atom), y ∈ free ('[x] t) <-> (exists (w : nat) l1, (w, l1) ∈d t /\ close_loc x (w, l1) = Fr y)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom

y ∈ free ('[x] t) <-> (exists (w : nat) l1, (w, l1) ∈d t /\ close_loc x (w, l1) = Fr y)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom

Fr y ∈ '[x] t <-> (exists (w : nat) l1, (w, l1) ∈d t /\ close_loc x (w, l1) = Fr y)
now rewrite in_close_iff. Qed. (** *** Substitution *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (u : T LN) t (x y : atom), y ∈ free (t '{ x ~> u}) <-> (exists l1, l1 ∈ t /\ y ∈ free (subst_loc x u l1))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (u : T LN) t (x y : atom), y ∈ free (t '{ x ~> u}) <-> (exists l1, l1 ∈ t /\ y ∈ free (subst_loc x u l1))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x, y: atom

y ∈ free (t '{ x ~> u}) <-> (exists l1, l1 ∈ t /\ y ∈ free (subst_loc x u l1))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x, y: atom

Fr y ∈ t '{ x ~> u} <-> (exists l1, l1 ∈ t /\ y ∈ free (subst_loc x u l1))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x, y: atom

Fr y ∈ t '{ x ~> u} <-> (exists l1, l1 ∈ t /\ Fr y ∈ subst_loc x u l1)
now rewrite in_subst_iff. Qed. (** ** [Miscellaneous utilities] *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x l t, ~ x ∈ free t -> l ∈ t -> Fr x <> l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x l t, ~ x ∈ free t -> l ∈ t -> Fr x <> l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
l: LN
t: U LN
hyp1: ~ x ∈ free t
hyp2: l ∈ t

Fr x <> l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
l: LN
t: U LN
hyp1: ~ Fr x ∈ t
hyp2: l ∈ t

Fr x <> l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, n: atom
t: U LN
hyp1: ~ Fr x ∈ t
hyp2: Fr n ∈ t

Fr x <> Fr n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
n: nat
t: U LN
hyp1: ~ Fr x ∈ t
hyp2: Bd n ∈ t
Fr x <> Bd n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, n: atom
t: U LN
hyp1: ~ Fr x ∈ t
hyp2: Fr n ∈ t

Fr x <> Fr n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, n: atom
t: U LN
hyp1: ~ Fr x ∈ t
hyp2: Fr n ∈ t
H: Fr x = Fr n

x = n -> False
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: atom
t: U LN
hyp1: ~ Fr n ∈ t
hyp2: Fr n ∈ t
H: Fr n = Fr n

False
contradiction.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
n: nat
t: U LN
hyp1: ~ Fr x ∈ t
hyp2: Bd n ∈ t

Fr x <> Bd n
discriminate. Qed. End locally_nameless_free_variables. (** * Locally nameless metatheory *) (******************************************************************************) Section locally_nameless_metatheory. Context `{Return_T: Return T} `{Map_T: Map T} `{Bind_TT: Bind T T} `{Traverse_T: Traverse T} `{Mapd_T: Mapd nat T} `{Bindt_TT: Bindt T T} `{Bindd_T: Bindd nat T} `{Mapdt_T: Mapdt nat T} `{Binddt_TT: Binddt nat T T} `{! Compat_Map_Binddt nat T T} `{! Compat_Bind_Binddt nat T T} `{! Compat_Traverse_Binddt nat T T} `{! Compat_Mapd_Binddt nat T T} `{! Compat_Bindt_Binddt nat T T} `{! Compat_Bindd_Binddt nat T T} `{! Compat_Mapdt_Binddt nat T T}. Context `{Map_U: Map U} `{Bind_TU: Bind T U} `{Traverse_U: Traverse U} `{Mapd_U: Mapd nat U} `{Bindt_TU: Bindt T U} `{Bindd_TU: Bindd nat T U} `{Mapdt_U: Mapdt nat U} `{Binddt_TU: Binddt nat T U} `{! Compat_Map_Binddt nat T U} `{! Compat_Bind_Binddt nat T U} `{! Compat_Traverse_Binddt nat T U} `{! Compat_Mapd_Binddt nat T U} `{! Compat_Bindt_Binddt nat T U} `{! Compat_Bindd_Binddt nat T U} `{! Compat_Mapdt_Binddt nat T U}. Context `{Monad_inst: ! DecoratedTraversableMonad nat T} `{Module_inst: ! DecoratedTraversableRightPreModule nat T U (unit := Monoid_unit_zero) (op := Monoid_op_plus)}. Open Scope set_scope. Implicit Types (l: LN) (p: LN) (w: nat) (n: nat) (t: U LN) (u: T LN) (x: atom). (** ** Occurrence analysis: substitution with contexts *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall l w p u x, (w, p) ∈d subst_loc x u l <-> l <> Fr x /\ w = Ƶ /\ l = p \/ l = Fr x /\ (w, p) ∈d u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall l w p u x, (w, p) ∈d subst_loc x u l <-> l <> Fr x /\ w = Ƶ /\ l = p \/ l = Fr x /\ (w, p) ∈d u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
w: nat
p: LN
u: T LN
x: atom

(w, p) ∈d subst_loc x u l <-> l <> Fr x /\ w = Ƶ /\ l = p \/ l = Fr x /\ (w, p) ∈d u
compare l to atom x; simpl_local; intuition. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall w t u l x, (w, l) ∈d t '{ x ~> u} <-> (w, l) ∈d t /\ l <> Fr x \/ (exists w1 w2, (w1, Fr x) ∈d t /\ (w2, l) ∈d u /\ w = w1 ● w2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall w t u l x, (w, l) ∈d t '{ x ~> u} <-> (w, l) ∈d t /\ l <> Fr x \/ (exists w1 w2, (w1, Fr x) ∈d t /\ (w2, l) ∈d u /\ w = w1 ● w2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
t: U LN
u: T LN
l: LN
x: atom

(w, l) ∈d t '{ x ~> u} <-> (w, l) ∈d t /\ l <> Fr x \/ (exists w1 w2, (w1, Fr x) ∈d t /\ (w2, l) ∈d u /\ w = w1 ● w2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
t: U LN
u: T LN
l: LN
x: atom

(exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d subst_loc x u l1 /\ w = n1 ● n2) <-> (w, l) ∈d t /\ l <> Fr x \/ (exists w1 w2, (w1, Fr x) ∈d t /\ (w2, l) ∈d u /\ w = w1 ● w2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
t: U LN
u: T LN
l: LN
x: atom

(exists n1 n2 l1, (n1, l1) ∈d t /\ (l1 <> Fr x /\ n2 = Ƶ /\ l1 = l \/ l1 = Fr x /\ (n2, l) ∈d u) /\ w = n1 ● n2) <-> (w, l) ∈d t /\ l <> Fr x \/ (exists w1 w2, (w1, Fr x) ∈d t /\ (w2, l) ∈d u /\ w = w1 ● w2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
t: U LN
u: T LN
l: LN
x: atom

(exists n1 n2 l1, (n1, l1) ∈d t /\ (l1 <> Fr x /\ n2 = Ƶ /\ l1 = l \/ l1 = Fr x /\ (n2, l) ∈d u) /\ w = n1 ● n2) -> (w, l) ∈d t /\ l <> Fr x \/ (exists w1 w2, (w1, Fr x) ∈d t /\ (w2, l) ∈d u /\ w = w1 ● w2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
t: U LN
u: T LN
l: LN
x: atom
(w, l) ∈d t /\ l <> Fr x \/ (exists w1 w2, (w1, Fr x) ∈d t /\ (w2, l) ∈d u /\ w = w1 ● w2) -> exists n1 n2 l1, (n1, l1) ∈d t /\ (l1 <> Fr x /\ n2 = Ƶ /\ l1 = l \/ l1 = Fr x /\ (n2, l) ∈d u) /\ w = n1 ● n2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
t: U LN
u: T LN
l: LN
x: atom

(exists n1 n2 l1, (n1, l1) ∈d t /\ (l1 <> Fr x /\ n2 = Ƶ /\ l1 = l \/ l1 = Fr x /\ (n2, l) ∈d u) /\ w = n1 ● n2) -> (w, l) ∈d t /\ l <> Fr x \/ (exists w1 w2, (w1, Fr x) ∈d t /\ (w2, l) ∈d u /\ w = w1 ● w2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
t: U LN
u: T LN
l: LN
x: atom
l', n1: nat
n2: LN
conditions: (l', n2) ∈d t /\ (n2 <> Fr x /\ n1 = Ƶ /\ n2 = l \/ n2 = Fr x /\ (n1, l) ∈d u) /\ w = l' ● n1

(w, l) ∈d t /\ l <> Fr x \/ (exists w1 w2, (w1, Fr x) ∈d t /\ (w2, l) ∈d u /\ w = w1 ● w2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
l: LN
x: atom
l', n1: nat
n2: LN
c1: (l', n2) ∈d t
c2: n2 <> Fr x /\ n1 = Ƶ /\ n2 = l

(l' ● n1, l) ∈d t /\ l <> Fr x \/ (exists w1 w2, (w1, Fr x) ∈d t /\ (w2, l) ∈d u /\ l' ● n1 = w1 ● w2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
l: LN
x: atom
l', n1: nat
n2: LN
c1: (l', n2) ∈d t
c2: n2 = Fr x /\ (n1, l) ∈d u
(l' ● n1, l) ∈d t /\ l <> Fr x \/ (exists w1 w2, (w1, Fr x) ∈d t /\ (w2, l) ∈d u /\ l' ● n1 = w1 ● w2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
l: LN
x: atom
l', n1: nat
n2: LN
c1: (l', n2) ∈d t
c2: n2 <> Fr x /\ n1 = Ƶ /\ n2 = l

(l' ● n1, l) ∈d t /\ l <> Fr x \/ (exists w1 w2, (w1, Fr x) ∈d t /\ (w2, l) ∈d u /\ l' ● n1 = w1 ● w2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
l: LN
x: atom
l', n1: nat
n2: LN
c1: (l', n2) ∈d t
c2: n2 <> Fr x /\ n1 = Ƶ /\ n2 = l

(l' ● n1, l) ∈d t /\ l <> Fr x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
l: LN
x: atom
l': nat
H: l <> Fr x
c1: (l', l) ∈d t

(l' ● Ƶ, l) ∈d t /\ l <> Fr x
now rewrite monoid_id_r.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
l: LN
x: atom
l', n1: nat
n2: LN
c1: (l', n2) ∈d t
c2: n2 = Fr x /\ (n1, l) ∈d u

(l' ● n1, l) ∈d t /\ l <> Fr x \/ (exists w1 w2, (w1, Fr x) ∈d t /\ (w2, l) ∈d u /\ l' ● n1 = w1 ● w2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
l: LN
x: atom
l', n1: nat
n2: LN
c1: (l', n2) ∈d t
c2: n2 = Fr x /\ (n1, l) ∈d u

exists w1 w2, (w1, Fr x) ∈d t /\ (w2, l) ∈d u /\ l' ● n1 = w1 ● w2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
l: LN
x: atom
l', n1: nat
c1: (l', Fr x) ∈d t
H0: (n1, l) ∈d u

exists w1 w2, (w1, Fr x) ∈d t /\ (w2, l) ∈d u /\ l' ● n1 = w1 ● w2
eauto.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
t: U LN
u: T LN
l: LN
x: atom

(w, l) ∈d t /\ l <> Fr x \/ (exists w1 w2, (w1, Fr x) ∈d t /\ (w2, l) ∈d u /\ w = w1 ● w2) -> exists n1 n2 l1, (n1, l1) ∈d t /\ (l1 <> Fr x /\ n2 = Ƶ /\ l1 = l \/ l1 = Fr x /\ (n2, l) ∈d u) /\ w = n1 ● n2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
t: U LN
u: T LN
l: LN
x: atom
H: (w, l) ∈d t
H0: l <> Fr x

exists n1 n2 l1, (n1, l1) ∈d t /\ (l1 <> Fr x /\ n2 = Ƶ /\ l1 = l \/ l1 = Fr x /\ (n2, l) ∈d u) /\ w = n1 ● n2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
t: U LN
u: T LN
l: LN
x: atom
n1, n2: nat
H: (n1, Fr x) ∈d t
H0: (n2, l) ∈d u
H1: w = n1 ● n2
exists n1 n2 l1, (n1, l1) ∈d t /\ (l1 <> Fr x /\ n2 = Ƶ /\ l1 = l \/ l1 = Fr x /\ (n2, l) ∈d u) /\ w = n1 ● n2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
t: U LN
u: T LN
l: LN
x: atom
H: (w, l) ∈d t
H0: l <> Fr x

exists n1 n2 l1, (n1, l1) ∈d t /\ (l1 <> Fr x /\ n2 = Ƶ /\ l1 = l \/ l1 = Fr x /\ (n2, l) ∈d u) /\ w = n1 ● n2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
t: U LN
u: T LN
l: LN
x: atom
H: (w, l) ∈d t
H0: l <> Fr x

(w, l) ∈d t /\ (l <> Fr x /\ Ƶ = Ƶ /\ l = l \/ l = Fr x /\ (Ƶ, l) ∈d u) /\ w = w ● Ƶ
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
t: U LN
u: T LN
l: LN
x: atom
H: (w, l) ∈d t
H0: l <> Fr x

(w, l) ∈d t /\ (l <> Fr x /\ Ƶ = Ƶ /\ l = l \/ l = Fr x /\ (Ƶ, l) ∈d u) /\ w = w
splits; auto.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
t: U LN
u: T LN
l: LN
x: atom
n1, n2: nat
H: (n1, Fr x) ∈d t
H0: (n2, l) ∈d u
H1: w = n1 ● n2

exists n1 n2 l1, (n1, l1) ∈d t /\ (l1 <> Fr x /\ n2 = Ƶ /\ l1 = l \/ l1 = Fr x /\ (n2, l) ∈d u) /\ w = n1 ● n2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
t: U LN
u: T LN
l: LN
x: atom
n1, n2: nat
H: (n1, Fr x) ∈d t
H0: (n2, l) ∈d u
H1: w = n1 ● n2

(n1, Fr x) ∈d t /\ (Fr x <> Fr x /\ n2 = Ƶ /\ Fr x = l \/ Fr x = Fr x /\ (n2, l) ∈d u) /\ w = n1 ● n2
splits; auto. Qed. (** ** Occurrence analysis: substitution without contexts *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall l p u x, p ∈ subst_loc x u l <-> l <> Fr x /\ l = p \/ l = Fr x /\ p ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall l p u x, p ∈ subst_loc x u l <-> l <> Fr x /\ l = p \/ l = Fr x /\ p ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l, p: LN
u: T LN
x: atom

p ∈ subst_loc x u l <-> l <> Fr x /\ l = p \/ l = Fr x /\ p ∈ u
compare l to atom x; autorewrite* with tea_local; intuition. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u l x, l ∈ t '{ x ~> u} <-> l ∈ t /\ l <> Fr x \/ Fr x ∈ t /\ l ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u l x, l ∈ t '{ x ~> u} <-> l ∈ t /\ l <> Fr x \/ Fr x ∈ t /\ l ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
l: LN
x: atom

l ∈ t '{ x ~> u} <-> l ∈ t /\ l <> Fr x \/ Fr x ∈ t /\ l ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
l: LN
x: atom

(exists l1, l1 ∈ t /\ l ∈ subst_loc x u l1) <-> l ∈ t /\ l <> Fr x \/ Fr x ∈ t /\ l ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
l: LN
x: atom

(exists l1, l1 ∈ t /\ (l1 <> Fr x /\ l1 = l \/ l1 = Fr x /\ l ∈ u)) <-> l ∈ t /\ l <> Fr x \/ Fr x ∈ t /\ l ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
l: LN
x: atom

(exists l1, l1 ∈ t /\ (l1 <> Fr x /\ l1 = l \/ l1 = Fr x /\ l ∈ u)) -> l ∈ t /\ l <> Fr x \/ Fr x ∈ t /\ l ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
l: LN
x: atom
l ∈ t /\ l <> Fr x \/ Fr x ∈ t /\ l ∈ u -> exists l1, l1 ∈ t /\ (l1 <> Fr x /\ l1 = l \/ l1 = Fr x /\ l ∈ u)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
l: LN
x: atom

(exists l1, l1 ∈ t /\ (l1 <> Fr x /\ l1 = l \/ l1 = Fr x /\ l ∈ u)) -> l ∈ t /\ l <> Fr x \/ Fr x ∈ t /\ l ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
l: LN
x: atom
x0: LN
H: x0 ∈ t
in_sub: x0 <> Fr x /\ x0 = l \/ x0 = Fr x /\ l ∈ u

l ∈ t /\ l <> Fr x \/ Fr x ∈ t /\ l ∈ u
destruct in_sub as [[? heq] | [heq ?]]; subst...
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
l: LN
x: atom

l ∈ t /\ l <> Fr x \/ Fr x ∈ t /\ l ∈ u -> exists l1, l1 ∈ t /\ (l1 <> Fr x /\ l1 = l \/ l1 = Fr x /\ l ∈ u)
intros [[? ?]|[? ?]]; eauto. Qed. (** ** Free variables after substitution *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u (x y : atom), y ∈ free (t '{ x ~> u}) <-> y ∈ free t /\ y <> x \/ x ∈ free t /\ y ∈ free u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u (x y : atom), y ∈ free (t '{ x ~> u}) <-> y ∈ free t /\ y <> x \/ x ∈ free t /\ y ∈ free u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x, y: atom

y ∈ free (t '{ x ~> u}) <-> y ∈ free t /\ y <> x \/ x ∈ free t /\ y ∈ free u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x, y: atom

Fr y ∈ t '{ x ~> u} <-> Fr y ∈ t /\ y <> x \/ Fr x ∈ t /\ Fr y ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x, y: atom

Fr y ∈ t /\ Fr y <> Fr x \/ Fr x ∈ t /\ Fr y ∈ u <-> Fr y ∈ t /\ y <> x \/ Fr x ∈ t /\ Fr y ∈ u
now simpl_local. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u x (y : AtomSet.elt), y `in` FV (t '{ x ~> u}) <-> y `in` FV t /\ y <> x \/ x `in` FV t /\ y `in` FV u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u x (y : AtomSet.elt), y `in` FV (t '{ x ~> u}) <-> y `in` FV t /\ y <> x \/ x `in` FV t /\ y `in` FV u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x: atom
y: AtomSet.elt

y `in` FV (t '{ x ~> u}) <-> y `in` FV t /\ y <> x \/ x `in` FV t /\ y `in` FV u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x: atom
y: AtomSet.elt

y ∈ free (t '{ x ~> u}) <-> y ∈ free t /\ y <> x \/ x ∈ free t /\ y ∈ free u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x: atom
y: AtomSet.elt

y ∈ free t /\ y <> x \/ x ∈ free t /\ y ∈ free u <-> y ∈ free t /\ y <> x \/ x ∈ free t /\ y ∈ free u
reflexivity. Qed. (** ** Upper and lower bounds for leaves after substitution *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u l x, l ∈ t '{ x ~> u} -> l ∈ t /\ l <> Fr x \/ l ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u l x, l ∈ t '{ x ~> u} -> l ∈ t /\ l <> Fr x \/ l ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
l: LN
x: atom
hin: l ∈ t '{ x ~> u}

l ∈ t /\ l <> Fr x \/ l ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
l: LN
x: atom
hin: l ∈ t /\ l <> Fr x \/ Fr x ∈ t /\ l ∈ u

l ∈ t /\ l <> Fr x \/ l ∈ u
intuition. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u (x y : atom), y ∈ free (t '{ x ~> u}) -> y ∈ free t /\ y <> x \/ y ∈ free u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u (x y : atom), y ∈ free (t '{ x ~> u}) -> y ∈ free t /\ y <> x \/ y ∈ free u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x, y: atom

y ∈ free (t '{ x ~> u}) -> y ∈ free t /\ y <> x \/ y ∈ free u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x, y: atom

Fr y ∈ t '{ x ~> u} -> Fr y ∈ t /\ y <> x \/ Fr y ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x, y: atom

Fr y ∈ t /\ Fr y <> Fr x \/ Fr x ∈ t /\ Fr y ∈ u -> Fr y ∈ t /\ y <> x \/ Fr y ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x, y: atom

Fr y ∈ t /\ y <> x \/ Fr x ∈ t /\ Fr y ∈ u -> Fr y ∈ t /\ y <> x \/ Fr y ∈ u
tauto. Qed. (* LNgen 4: fv-subst-upper *)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u x, FV (t '{ x ~> u}) ⊆ FV t \\ {{x}} ∪ FV u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u x, FV (t '{ x ~> u}) ⊆ FV t \\ {{x}} ∪ FV u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
y: T LN
x: atom
a: AtomSet.elt

a `in` FV (t '{ x ~> y}) -> a `in` (FV t \\ {{x}} ∪ FV y)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
y: T LN
x: atom
a: AtomSet.elt

a `in` FV (t '{ x ~> y}) -> a `in` FV t /\ a <> x \/ a `in` FV y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
y: T LN
x: atom
a: AtomSet.elt

a ∈ free (t '{ x ~> y}) -> a ∈ free t /\ a <> x \/ a ∈ free y
apply in_free_subst_upper. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u l x, l ∈ t /\ l <> Fr x -> l ∈ t '{ x ~> u}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u l x, l ∈ t /\ l <> Fr x -> l ∈ t '{ x ~> u}
intros; rewrite in_subst_iff'... Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u (x y : atom), y ∈ free t -> y <> x -> y ∈ free (t '{ x ~> u})
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u (x y : atom), y ∈ free t -> y <> x -> y ∈ free (t '{ x ~> u})
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u (x y : atom), Fr y ∈ t -> y <> x -> Fr y ∈ t '{ x ~> u}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x, y: atom
H: Fr y ∈ t
H0: y <> x

Fr y ∈ t '{ x ~> u}
apply in_subst_lower; now simpl_local. Qed. (* LNgen 5: fv-subst-lower *)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (t : T LN) (u : U LN) x, FV u \\ {{x}} ⊆ FV (u '{ x ~> t})
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (t : T LN) (u : U LN) x, FV u \\ {{x}} ⊆ FV (u '{ x ~> t})
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: T LN
u: U LN
x: atom

FV u \\ {{x}} ⊆ FV (u '{ x ~> t})
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: T LN
u: U LN
x: atom
a: AtomSet.elt

a `in` (FV u \\ {{x}}) -> a `in` FV (u '{ x ~> t})
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: T LN
u: U LN
x: atom
a: AtomSet.elt

a `in` FV u /\ a <> x -> a `in` FV (u '{ x ~> t})
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: T LN
u: U LN
x: atom
a: AtomSet.elt

a ∈ free u /\ a <> x -> a ∈ free (u '{ x ~> t})
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: T LN
u: U LN
x: atom
a: AtomSet.elt
H: a ∈ free u
H0: a <> x

a ∈ free (u '{ x ~> t})
now apply in_free_subst_lower. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u x (γ1 γ2 : AtomSet.t), scoped t γ1 -> scoped u γ2 -> scoped (t '{ x ~> u}) (γ1 \\ {{x}} ∪ γ2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u x (γ1 γ2 : AtomSet.t), scoped t γ1 -> scoped u γ2 -> scoped (t '{ x ~> u}) (γ1 \\ {{x}} ∪ γ2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x: atom
γ1, γ2: AtomSet.t
St: scoped t γ1
Su: scoped u γ2

scoped (t '{ x ~> u}) (γ1 \\ {{x}} ∪ γ2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x: atom
γ1, γ2: AtomSet.t
St: FV t ⊆ γ1
Su: FV u ⊆ γ2

FV (t '{ x ~> u}) ⊆ γ1 \\ {{x}} ∪ γ2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x: atom
γ1, γ2: AtomSet.t
St: FV t ⊆ γ1
Su: FV u ⊆ γ2

FV (t '{ x ~> u}) ⊆ ?y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x: atom
γ1, γ2: AtomSet.t
St: FV t ⊆ γ1
Su: FV u ⊆ γ2
?y ⊆ γ1 \\ {{x}} ∪ γ2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x: atom
γ1, γ2: AtomSet.t
St: FV t ⊆ γ1
Su: FV u ⊆ γ2

FV t \\ {{x}} ∪ FV u ⊆ γ1 \\ {{x}} ∪ γ2
fsetdec. Qed. (** ** Substitution of fresh variables *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x u, ~ x ∈ free t -> t '{ x ~> u} = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x u, ~ x ∈ free t -> t '{ x ~> u} = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
u: T LN
H: ~ x ∈ free t

t '{ x ~> u} = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
u: T LN
H: ~ x ∈ free t

forall l, l ∈ t -> subst_loc x u l = ret l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
u: T LN
H: ~ x ∈ free t
l: LN
H0: l ∈ t

subst_loc x u l = ret l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
u: T LN
H: ~ x ∈ free t
l: LN
H0: l ∈ t
H1: Fr x <> l

subst_loc x u l = ret l
now simpl_local. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (t : T LN) x u, ~ x ∈ free t -> t '{ x ~> u} = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (t : T LN) x u, ~ x ∈ free t -> t '{ x ~> u} = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: T LN
x: atom
u: T LN
H: ~ x ∈ free t

t '{ x ~> u} = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: T LN
x: atom
u: T LN
H: ~ x ∈ free t

forall l, l ∈ t -> subst_loc x u l = ret l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: T LN
x: atom
u: T LN
H: ~ x ∈ free t
l: LN
H0: l ∈ t

subst_loc x u l = ret l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: T LN
x: atom
u: T LN
H: ~ x ∈ free t
l: LN
H0: l ∈ t
H1: Fr x <> l

subst_loc x u l = ret l
now simpl_local. Qed. (* LNgen 7: subst-fresh-eq *)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x u, x `notin` FV t -> t '{ x ~> u} = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x u, x `notin` FV t -> t '{ x ~> u} = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x u, ~ x ∈ free t -> t '{ x ~> u} = t
apply subst_fresh. Qed. (* LNgen 6: fv-subst-fresh *)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x u, x `notin` FV t -> FV (t '{ x ~> u}) = FV t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x u, x `notin` FV t -> FV (t '{ x ~> u}) = FV t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
u: T LN
H: x `notin` FV t

FV (t '{ x ~> u}) = FV t
rewrite subst_fresh_set; auto. Qed. (** ** Composing substitutions *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u1 u2 x1 x2, ~ x1 ∈ free u2 -> x1 <> x2 -> subst_loc x2 u2 ⋆ subst_loc x1 u1 = subst_loc x1 (u1 '{ x2 ~> u2}) ⋆ subst_loc x2 u2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u1 u2 x1 x2, ~ x1 ∈ free u2 -> x1 <> x2 -> subst_loc x2 u2 ⋆ subst_loc x1 u1 = subst_loc x1 (u1 '{ x2 ~> u2}) ⋆ subst_loc x2 u2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2

subst_loc x2 u2 ⋆ subst_loc x1 u1 = subst_loc x1 (u1 '{ x2 ~> u2}) ⋆ subst_loc x2 u2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2
l: LN

(subst_loc x2 u2 ⋆ subst_loc x1 u1) l = (subst_loc x1 (u1 '{ x2 ~> u2}) ⋆ subst_loc x2 u2) l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2
l: LN

(subst_loc x2 u2 ⋆ subst_loc x1 u1) l = (subst_loc x1 (u1 '{ x2 ~> u2}) ⋆ subst_loc x2 u2) l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2
l: LN

subst_loc x1 u1 l '{ x2 ~> u2} = (subst_loc x1 (u1 '{ x2 ~> u2}) ⋆ subst_loc x2 u2) l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2
l: LN

subst_loc x1 u1 l '{ x2 ~> u2} = subst_loc x2 u2 l '{ x1 ~> u1 '{ x2 ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2

subst_loc x1 u1 (Fr x1) '{ x2 ~> u2} = subst_loc x2 u2 (Fr x1) '{ x1 ~> u1 '{ x2 ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2
a: atom
H1: a <> x1
subst_loc x1 u1 (Fr a) '{ x2 ~> u2} = subst_loc x2 u2 (Fr a) '{ x1 ~> u1 '{ x2 ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2
n: nat
subst_loc x1 u1 (Bd n) '{ x2 ~> u2} = subst_loc x2 u2 (Bd n) '{ x1 ~> u1 '{ x2 ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2

subst_loc x1 u1 (Fr x1) '{ x2 ~> u2} = subst_loc x2 u2 (Fr x1) '{ x1 ~> u1 '{ x2 ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2

u1 '{ x2 ~> u2} = subst_loc x2 u2 (Fr x1) '{ x1 ~> u1 '{ x2 ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2

u1 '{ x2 ~> u2} = ret (Fr x1) '{ x1 ~> u1 '{ x2 ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2

u1 '{ x2 ~> u2} = subst_loc x1 (u1 '{ x2 ~> u2}) (Fr x1)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2

u1 '{ x2 ~> u2} = u1 '{ x2 ~> u2}
reflexivity.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2
a: atom
H1: a <> x1

subst_loc x1 u1 (Fr a) '{ x2 ~> u2} = subst_loc x2 u2 (Fr a) '{ x1 ~> u1 '{ x2 ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2
a: atom
H1: a <> x1

ret (Fr a) '{ x2 ~> u2} = subst_loc x2 u2 (Fr a) '{ x1 ~> u1 '{ x2 ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1: atom
H: ~ x1 ∈ free u2
a: atom
H0: x1 <> a
H1: a <> x1
DESTR_EQs: a = a

ret (Fr a) '{ a ~> u2} = subst_loc a u2 (Fr a) '{ x1 ~> u1 '{ a ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2
a: atom
H1: a <> x1
DESTR_NEQ: x2 <> a
DESTR_NEQs: a <> x2
ret (Fr a) '{ x2 ~> u2} = subst_loc x2 u2 (Fr a) '{ x1 ~> u1 '{ x2 ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1: atom
H: ~ x1 ∈ free u2
a: atom
H0: x1 <> a
H1: a <> x1
DESTR_EQs: a = a

ret (Fr a) '{ a ~> u2} = subst_loc a u2 (Fr a) '{ x1 ~> u1 '{ a ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1: atom
H: ~ x1 ∈ free u2
a: atom
H0: x1 <> a
H1: a <> x1
DESTR_EQs: a = a

subst_loc a u2 (Fr a) = subst_loc a u2 (Fr a) '{ x1 ~> u1 '{ a ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1: atom
H: ~ x1 ∈ free u2
a: atom
H0: x1 <> a
H1: a <> x1
DESTR_EQs: a = a

u2 = u2 '{ x1 ~> u1 '{ a ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1: atom
H: ~ x1 ∈ free u2
a: atom
H0: x1 <> a
H1: a <> x1
DESTR_EQs: a = a

u2 = u2
reflexivity.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2
a: atom
H1: a <> x1
DESTR_NEQ: x2 <> a
DESTR_NEQs: a <> x2

ret (Fr a) '{ x2 ~> u2} = subst_loc x2 u2 (Fr a) '{ x1 ~> u1 '{ x2 ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2
a: atom
H1: a <> x1
DESTR_NEQ: x2 <> a
DESTR_NEQs: a <> x2

subst_loc x2 u2 (Fr a) = subst_loc x2 u2 (Fr a) '{ x1 ~> u1 '{ x2 ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2
a: atom
H1: a <> x1
DESTR_NEQ: x2 <> a
DESTR_NEQs: a <> x2

ret (Fr a) = ret (Fr a) '{ x1 ~> u1 '{ x2 ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2
a: atom
H1: a <> x1
DESTR_NEQ: x2 <> a
DESTR_NEQs: a <> x2

ret (Fr a) = subst_loc x1 (u1 '{ x2 ~> u2}) (Fr a)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2
a: atom
H1: a <> x1
DESTR_NEQ: x2 <> a
DESTR_NEQs: a <> x2

ret (Fr a) = ret (Fr a)
reflexivity.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2
n: nat

subst_loc x1 u1 (Bd n) '{ x2 ~> u2} = subst_loc x2 u2 (Bd n) '{ x1 ~> u1 '{ x2 ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2
n: nat

ret (Bd n) '{ x2 ~> u2} = subst_loc x2 u2 (Bd n) '{ x1 ~> u1 '{ x2 ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2
n: nat

subst_loc x2 u2 (Bd n) = subst_loc x2 u2 (Bd n) '{ x1 ~> u1 '{ x2 ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2
n: nat

ret (Bd n) = ret (Bd n) '{ x1 ~> u1 '{ x2 ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2
n: nat

ret (Bd n) = subst_loc x1 (u1 '{ x2 ~> u2}) (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2
n: nat

ret (Bd n) = ret (Bd n)
reflexivity. Qed. (* LNgen 8: subst-subst *)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u1 u2 t x1 x2, ~ x1 ∈ free u2 -> x1 <> x2 -> (t '{ x1 ~> u1}) '{ x2 ~> u2} = (t '{ x2 ~> u2}) '{ x1 ~> u1 '{ x2 ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u1 u2 t x1 x2, ~ x1 ∈ free u2 -> x1 <> x2 -> (t '{ x1 ~> u1}) '{ x2 ~> u2} = (t '{ x2 ~> u2}) '{ x1 ~> u1 '{ x2 ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
t: U LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2

(t '{ x1 ~> u1}) '{ x2 ~> u2} = (t '{ x2 ~> u2}) '{ x1 ~> u1 '{ x2 ~> u2}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
t: U LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2

bind (subst_loc x2 u2) (bind (subst_loc x1 u1) t) = bind (subst_loc x1 (bind (subst_loc x2 u2) u1)) (bind (subst_loc x2 u2) t)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
t: U LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2

(bind (subst_loc x2 u2) ∘ bind (subst_loc x1 u1)) t = (bind (subst_loc x1 (bind (subst_loc x2 u2) u1)) ∘ bind (subst_loc x2 u2)) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
t: U LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2

bind (subst_loc x2 u2 ⋆ subst_loc x1 u1) t = (bind (subst_loc x1 (bind (subst_loc x2 u2) u1)) ∘ bind (subst_loc x2 u2)) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
t: U LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2

bind (subst_loc x1 (u1 '{ x2 ~> u2}) ⋆ subst_loc x2 u2) t = (bind (subst_loc x1 (bind (subst_loc x2 u2) u1)) ∘ bind (subst_loc x2 u2)) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
t: U LN
x1, x2: atom
H: ~ x1 ∈ free u2
H0: x1 <> x2

bind (subst_loc x1 (u1 '{ x2 ~> u2}) ⋆ subst_loc x2 u2) t = bind (subst_loc x1 (bind (subst_loc x2 u2) u1) ⋆ subst_loc x2 u2) t
reflexivity. Qed. (** ** Commuting two substitutions *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u1 u2 t x1 x2, x1 <> x2 -> ~ x1 ∈ free u2 -> ~ x2 ∈ free u1 -> (t '{ x1 ~> u1}) '{ x2 ~> u2} = (t '{ x2 ~> u2}) '{ x1 ~> u1}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u1 u2 t x1 x2, x1 <> x2 -> ~ x1 ∈ free u2 -> ~ x2 ∈ free u1 -> (t '{ x1 ~> u1}) '{ x2 ~> u2} = (t '{ x2 ~> u2}) '{ x1 ~> u1}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
t: U LN
x1, x2: atom
H: x1 <> x2
H0: ~ x1 ∈ free u2
H1: ~ x2 ∈ free u1

(t '{ x1 ~> u1}) '{ x2 ~> u2} = (t '{ x2 ~> u2}) '{ x1 ~> u1}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
t: U LN
x1, x2: atom
H: x1 <> x2
H0: ~ x1 ∈ free u2
H1: ~ x2 ∈ free u1

(t '{ x2 ~> u2}) '{ x1 ~> u1 '{ x2 ~> u2}} = (t '{ x2 ~> u2}) '{ x1 ~> u1}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
t: U LN
x1, x2: atom
H: x1 <> x2
H0: ~ x1 ∈ free u2
H1: ~ x2 ∈ free u1

(t '{ x2 ~> u2}) '{ x1 ~> u1} = (t '{ x2 ~> u2}) '{ x1 ~> u1}
reflexivity. Qed. (** ** Local closure is preserved by substitution *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u t x, LC t -> LC u -> LC (t '{ x ~> u})
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u t x, LC t -> LC u -> LC (t '{ x ~> u})
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u t x, (forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)) -> LC u -> forall w l, (w, l) ∈d t '{ x ~> u} -> lc_loc 0 (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
lcu: LC u
w: nat
l: LN
hin: (w, l) ∈d t '{ x ~> u}

lc_loc 0 (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
lcu: LC u
w: nat
l: LN
hin: (w, l) ∈d t /\ l <> Fr x \/ (exists w1 w2, (w1, Fr x) ∈d t /\ (w2, l) ∈d u /\ w = w1 ● w2)

lc_loc 0 (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
lcu: LC u
w: nat
l: LN
H: (w, l) ∈d t
H0: l <> Fr x

lc_loc 0 (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
lcu: LC u
w: nat
l: LN
n1, n2: nat
h1: (n1, Fr x) ∈d t
h2: (n2, l) ∈d u
h3: w = n1 ● n2
lc_loc 0 (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
lcu: LC u
w: nat
l: LN
H: (w, l) ∈d t
H0: l <> Fr x

lc_loc 0 (w, l)
auto.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
lcu: LC u
w: nat
l: LN
n1, n2: nat
h1: (n1, Fr x) ∈d t
h2: (n2, l) ∈d u
h3: w = n1 ● n2

lc_loc 0 (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
lcu: LC u
l: LN
n1, n2: nat
h1: (n1, Fr x) ∈d t
h2: (n2, l) ∈d u

lc_loc 0 (n1 ● n2, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
l: LN
n1, n2: nat
h1: (n1, Fr x) ∈d t
h2: (n2, l) ∈d u

lc_loc 0 (n1 ● n2, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
l: LN
n2: nat
lcu: lc_loc 0 (n2, l)
n1: nat
h1: (n1, Fr x) ∈d t
h2: (n2, l) ∈d u

lc_loc 0 (n1 ● n2, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> match l with | Fr _ => True | Bd n => n < w + 0 end
l: LN
n2: nat
lcu: match l with | Fr _ => True | Bd n => n < n2 + 0 end
n1: nat
h1: (n1, Fr x) ∈d t
h2: (n2, l) ∈d u

match l with | Fr _ => True | Bd n => n < (n1 ● n2) + 0 end
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> match l with | Fr _ => True | Bd n => n < w + 0 end
n, n2: nat
lcu: n < n2 + 0
n1: nat
h1: (n1, Fr x) ∈d t
h2: (n2, Bd n) ∈d u

n < (n1 ● n2) + 0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> match l with | Fr _ => True | Bd n => n < w + 0 end
n, n2: nat
lcu: n < n2 + 0
n1: nat
h1: (n1, Fr x) ∈d t
h2: (n2, Bd n) ∈d u

n < n1 + n2 + 0
lia. Qed. (** ** Decompose substitution into closing/opening *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u w l x, subst_loc x u l = open_loc u (cobind (close_loc x) (w, l))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u w l x, subst_loc x u l = open_loc u (cobind (close_loc x) (w, l))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w: nat
l: LN
x: atom

subst_loc x u l = open_loc u (cobind (close_loc x) (w, l))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w: nat
x: atom

u = open_loc u (cobind (close_loc x) (w, Fr x))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w: nat
x, a: atom
H: a <> x
ret (Fr a) = open_loc u (cobind (close_loc x) (w, Fr a))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w: nat
x: atom
n: nat
ret (Bd n) = open_loc u (cobind (close_loc x) (w, Bd n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w: nat
x: atom

u = open_loc u (cobind (close_loc x) (w, Fr x))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w: nat
x: atom

u = match (if x == x then Bd w else Fr x) with | Fr x => ret (Fr x) | Bd n => match n ?= w with | Eq => u | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end end
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w: nat
x: atom
DESTR_EQ, DESTR_EQs: x = x

u = match w ?= w with | Eq => u | Lt => ret (Bd w) | Gt => ret (Bd (w - 1)) end
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w: nat
x: atom
DESTR_EQ, DESTR_EQs: x = x

u = match w ?= w with | Eq => u | Lt => ret (Bd w) | Gt => ret (Bd (w - 1)) end
compare naturals w and w.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w: nat
x, a: atom
H: a <> x

ret (Fr a) = open_loc u (cobind (close_loc x) (w, Fr a))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w: nat
x, a: atom
H: a <> x

ret (Fr a) = match (if x == a then Bd w else Fr a) with | Fr x => ret (Fr x) | Bd n => match n ?= w with | Eq => u | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end end
compare values x and a. (* todo fix fragile names *)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w: nat
x: atom
n: nat

ret (Bd n) = open_loc u (cobind (close_loc x) (w, Bd n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w: nat
x: atom
n: nat

ret (Bd n) = match match n ?= w with | Lt => Bd n | _ => Bd (S n) end with | Fr x => ret (Fr x) | Bd n => match n ?= w with | Eq => u | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end end
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w: nat
x: atom
n: nat

ret (Bd n) = match match n ?= w with | Lt => Bd n | _ => Bd (S n) end with | Fr x => ret (Fr x) | Bd n => match n ?= w with | Eq => u | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end end
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w: nat
x: atom
ineqrw: (w ?= w) = Eq

ret (Bd w) = match S w ?= w with | Eq => u | Lt => ret (Bd (S w)) | Gt => ret (Bd (S w - 1)) end
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w: nat
x: atom
n: nat
ineqrw: (n ?= w) = Gt
ineqp: n > w
ret (Bd n) = match S n ?= w with | Eq => u | Lt => ret (Bd (S n)) | Gt => ret (Bd (S n - 1)) end
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w: nat
x: atom
n: nat
ineqrw: (n ?= w) = Gt
ineqp: n > w

ret (Bd n) = match S n ?= w with | Eq => u | Lt => ret (Bd (S n)) | Gt => ret (Bd (S n - 1)) end
now compare naturals (S n) and w. Qed. (* LNgen 9: subst-spec *)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x u t, t '{ x ~> u} = ('[x] t) '(u)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x u t, t '{ x ~> u} = ('[x] t) '(u)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
u: T LN
t: U LN

t '{ x ~> u} = ('[x] t) '(u)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
u: T LN
t: U LN

t '{ x ~> u} = (open u ∘ close x) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
u: T LN
t: U LN

bind (subst_loc x u) t = (bindd (open_loc u) ∘ mapd (close_loc x)) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
u: T LN
t: U LN

bind (subst_loc x u) t = bindd (open_loc u ⋆1 close_loc x) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
u: T LN
t: U LN

bindd (subst_loc x u ∘ extract) t = bindd (open_loc u ⋆1 close_loc x) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
u: T LN
t: U LN

subst_loc x u ∘ extract = open_loc u ⋆1 close_loc x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
u: T LN
t: U LN
w: nat
l: LN

(subst_loc x u ∘ extract) (w, l) = (open_loc u ⋆1 close_loc x) (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
u: T LN
t: U LN
w: nat
l: LN

subst_loc x u l = match match l with | Fr y => if x == y then Bd w else Fr y | Bd n => match n ?= w with | Lt => Bd n | _ => Bd (S n) end end with | Fr x => ret (Fr x) | Bd n => match n ?= w with | Eq => u | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end end
now erewrite subst_spec_local. Qed. (** ** Substitution when <<u>> is a LN **) (******************************************************************************) Definition subst_loc_LN x (u: LN): LN -> LN := fun l => match l with | Fr y => if x == y then u else Fr y | Bd n => Bd n end.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x l, subst x (ret l) = map (subst_loc_LN x l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x l, subst x (ret l) = map (subst_loc_LN x l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
l: LN

subst x (ret l) = map (subst_loc_LN x l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
l: LN

bind (subst_loc x (ret l)) = map (subst_loc_LN x l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
l: LN
t: U LN

bind (subst_loc x (ret l)) t = map (subst_loc_LN x l) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
l: LN
t: U LN

forall a : LN, a ∈ t -> subst_loc x (ret l) a = ret (subst_loc_LN x l a)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
l: LN
t: U LN
l': LN
l'in: l' ∈ t

subst_loc x (ret l) l' = ret (subst_loc_LN x l l')
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
l: LN
t: U LN
n: atom
l'in: Fr n ∈ t

subst_loc x (ret l) (Fr n) = ret (subst_loc_LN x l (Fr n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
l: LN
t: U LN
n: nat
l'in: Bd n ∈ t
subst_loc x (ret l) (Bd n) = ret (subst_loc_LN x l (Bd n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
l: LN
t: U LN
n: atom
l'in: Fr n ∈ t

subst_loc x (ret l) (Fr n) = ret (subst_loc_LN x l (Fr n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
l: LN
t: U LN
n: atom
l'in: Fr n ∈ t

(if x == n then ret l else ret (Fr n)) = ret (if x == n then l else Fr n)
compare values x and n.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
l: LN
t: U LN
n: nat
l'in: Bd n ∈ t

subst_loc x (ret l) (Bd n) = ret (subst_loc_LN x l (Bd n))
reflexivity. Qed. (** ** Substitution by the same variable is the identity *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x, t '{ x ~> ret (Fr x)} = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x, t '{ x ~> ret (Fr x)} = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom

t '{ x ~> ret (Fr x)} = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom

forall l, l ∈ t -> subst_loc x (ret (Fr x)) l = ret l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
l: LN
H: l ∈ t

subst_loc x (ret (Fr x)) l = ret l
compare l to atom x; now simpl_local. Qed. (** ** Free variables after variable closing *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall w l t (x y : atom), (w, l) ∈d t -> close_loc x (w, l) = Fr y -> Fr y ∈ t /\ x <> y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall w l t (x y : atom), (w, l) ∈d t -> close_loc x (w, l) = Fr y -> Fr y ∈ t /\ x <> y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
l: LN
t: U LN
x, y: atom
lin: (w, l) ∈d t
heq: close_loc x (w, l) = Fr y

Fr y ∈ t /\ x <> y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
la: atom
t: U LN
x, y: atom
lin: (w, Fr la) ∈d t
heq: close_loc x (w, Fr la) = Fr y

Fr y ∈ t /\ x <> y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w, ln: nat
t: U LN
x, y: atom
lin: (w, Bd ln) ∈d t
heq: close_loc x (w, Bd ln) = Fr y
Fr y ∈ t /\ x <> y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
la: atom
t: U LN
x, y: atom
lin: (w, Fr la) ∈d t
heq: close_loc x (w, Fr la) = Fr y

Fr y ∈ t /\ x <> y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
la: atom
t: U LN
x, y: atom
lin: (w, Fr la) ∈d t
heq: (if x == la then Bd w else Fr la) = Fr y

Fr y ∈ t /\ x <> y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
la: atom
t: U LN
x, y: atom
lin: (w, Fr la) ∈d t
DESTR_NEQ: x <> la
heq: Fr la = Fr y
DESTR_NEQs: la <> x

Fr y ∈ t /\ x <> y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
t: U LN
x, y: atom
DESTR_NEQs: y <> x
DESTR_NEQ: x <> y
lin: (w, Fr y) ∈d t

Fr y ∈ t /\ x <> y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w: nat
t: U LN
x, y: atom
DESTR_NEQs: y <> x
DESTR_NEQ: x <> y
lin: Fr y ∈ t

Fr y ∈ t /\ x <> y
tauto.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w, ln: nat
t: U LN
x, y: atom
lin: (w, Bd ln) ∈d t
heq: close_loc x (w, Bd ln) = Fr y

Fr y ∈ t /\ x <> y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
w, ln: nat
t: U LN
x, y: atom
lin: (w, Bd ln) ∈d t
heq: match ln ?= w with | Lt => Bd ln | _ => Bd (S ln) end = Fr y

Fr y ∈ t /\ x <> y
compare_nats_args ln w; discriminate. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t (x y : atom), x <> y -> Fr y ∈ t -> exists w l, (w, l) ∈d t /\ close_loc x (w, l) = Fr y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t (x y : atom), x <> y -> Fr y ∈ t -> exists w l, (w, l) ∈d t /\ close_loc x (w, l) = Fr y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom
neq: x <> y
yin: Fr y ∈ t

exists w l, (w, l) ∈d t /\ close_loc x (w, l) = Fr y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom
neq: x <> y
yin: exists e : nat, (e, Fr y) ∈d t

exists w l, (w, l) ∈d t /\ close_loc x (w, l) = Fr y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom
neq: x <> y
w: nat
yin: (w, Fr y) ∈d t

exists w l, (w, l) ∈d t /\ close_loc x (w, l) = Fr y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom
neq: x <> y
w: nat
yin: (w, Fr y) ∈d t

exists l, (w, l) ∈d t /\ close_loc x (w, l) = Fr y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom
neq: x <> y
w: nat
yin: (w, Fr y) ∈d t

(w, Fr y) ∈d t /\ close_loc x (w, Fr y) = Fr y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom
neq: x <> y
w: nat
yin: (w, Fr y) ∈d t

(w, Fr y) ∈d t /\ (if x == y then Bd w else Fr y) = Fr y
compare values x and y. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t (x y : atom), y ∈ free ('[x] t) <-> y ∈ free t /\ x <> y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t (x y : atom), y ∈ free ('[x] t) <-> y ∈ free t /\ x <> y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom

y ∈ free ('[x] t) <-> y ∈ free t /\ x <> y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom

(exists w l1, (w, l1) ∈d t /\ close_loc x (w, l1) = Fr y) <-> y ∈ free t /\ x <> y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom

(exists w l1, (w, l1) ∈d t /\ close_loc x (w, l1) = Fr y) <-> Fr y ∈ t /\ x <> y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom

(exists w l1, (w, l1) ∈d t /\ close_loc x (w, l1) = Fr y) -> Fr y ∈ t /\ x <> y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom
Fr y ∈ t /\ x <> y -> exists w l1, (w, l1) ∈d t /\ close_loc x (w, l1) = Fr y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom

(exists w l1, (w, l1) ∈d t /\ close_loc x (w, l1) = Fr y) -> Fr y ∈ t /\ x <> y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom
x0: nat
x1: LN
H: (x0, x1) ∈d t
H0: close_loc x (x0, x1) = Fr y

Fr y ∈ t /\ x <> y
eauto using in_free_close_iff_loc1.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom

Fr y ∈ t /\ x <> y -> exists w l1, (w, l1) ∈d t /\ close_loc x (w, l1) = Fr y
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom
H: Fr y ∈ t
H0: x <> y

exists w l1, (w, l1) ∈d t /\ close_loc x (w, l1) = Fr y
eauto using in_free_close_iff_loc2. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t (x y : atom), y <> x -> y ∈ free ('[x] t) <-> y ∈ free t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t (x y : atom), y <> x -> y ∈ free ('[x] t) <-> y ∈ free t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom
H: y <> x

y ∈ free ('[x] t) <-> y ∈ free t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x, y: atom
H: y <> x

y ∈ free t /\ x <> y <-> y ∈ free t
intuition. Qed. (* LNgen 3: fv-close *)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x, FV ('[x] t) [=] FV t \\ {{x}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x, FV ('[x] t) [=] FV t \\ {{x}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom

FV ('[x] t) [=] FV t \\ {{x}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
a: AtomSet.elt

a `in` FV ('[x] t) <-> a `in` (FV t \\ {{x}})
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
a: AtomSet.elt

a `in` FV ('[x] t) <-> a `in` FV t /\ a `notin` {{x}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
a: AtomSet.elt

a ∈ free ('[x] t) <-> a ∈ free t /\ a `notin` {{x}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
a: AtomSet.elt

a ∈ free t /\ x <> a <-> a ∈ free t /\ a `notin` {{x}}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
a: AtomSet.elt

a ∈ free t /\ x <> a <-> a ∈ free t /\ a <> x
intuition. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x, ~ x ∈ free ('[x] t)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x, ~ x ∈ free ('[x] t)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom

~ x ∈ free ('[x] t)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom

~ (x ∈ free t /\ x <> x)
intuition. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x, x `notin` FV ('[x] t)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x, x `notin` FV ('[x] t)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom

x `notin` FV ('[x] t)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom

~ x ∈ free ('[x] t)
apply nin_free_close. Qed. (** ** Variable closing and local closure *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x, LC t -> LCn 1 ('[x] t)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x, LC t -> LCn 1 ('[x] t)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x, (forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)) -> forall w l, (w, l) ∈d '[x] t -> lc_loc 1 (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
w: nat
l: LN
hin: (w, l) ∈d '[x] t

lc_loc 1 (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
w: nat
l: LN
hin: exists l1, (w, l1) ∈d t /\ close_loc x (w, l1) = l

lc_loc 1 (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
w: nat
l, l1: LN
H: (w, l1) ∈d t
H0: close_loc x (w, l1) = l

lc_loc 1 (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
w: nat
H: (w, Fr x) ∈d t

lc_loc 1 (w, close_loc x (w, Fr x))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
w: nat
a: atom
H: (w, Fr a) ∈d t
H1: a <> x
lc_loc 1 (w, close_loc x (w, Fr a))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
w, n: nat
H: (w, Bd n) ∈d t
lc_loc 1 (w, close_loc x (w, Bd n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
w: nat
H: (w, Fr x) ∈d t

lc_loc 1 (w, close_loc x (w, Fr x))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
w: nat
H: (w, Fr x) ∈d t

match (if x == x then Bd w else Fr x) with | Fr _ => True | Bd n => n < w + 1 end
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
w: nat
H: (w, Fr x) ∈d t
DESTR_EQ, DESTR_EQs: x = x

w < w + 1
unfold_lia.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
w: nat
a: atom
H: (w, Fr a) ∈d t
H1: a <> x

lc_loc 1 (w, close_loc x (w, Fr a))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
w: nat
a: atom
H: (w, Fr a) ∈d t
H1: a <> x

match (if x == a then Bd w else Fr a) with | Fr _ => True | Bd n => n < w + 1 end
compare values x and a.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
w, n: nat
H: (w, Bd n) ∈d t

lc_loc 1 (w, close_loc x (w, Bd n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
w, n: nat
H: (w, Bd n) ∈d t

match match n ?= w with | Lt => Bd n | _ => Bd (S n) end with | Fr _ => True | Bd n => n < w + 1 end
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
w: nat
ineqrw: (w ?= w) = Eq
H: (w, Bd w) ∈d t

S w < w + 1
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
w, n: nat
H: (w, Bd n) ∈d t
ineqrw: (n ?= w) = Gt
ineqp: n > w
S n < w + 1
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
w: nat
ineqrw: (w ?= w) = Eq
H: (w, Bd w) ∈d t

S w < w + 1
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
w: nat
ineqrw: (w ?= w) = Eq
H: (w, Bd w) ∈d t

False
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
w: nat
lct: lc_loc 0 (w, Bd w)
ineqrw: (w ?= w) = Eq
H: (w, Bd w) ∈d t

False
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
w: nat
lct: w < w + 0
ineqrw: (w ?= w) = Eq
H: (w, Bd w) ∈d t

False
lia.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
lct: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
w, n: nat
H: (w, Bd n) ∈d t
ineqrw: (n ?= w) = Gt
ineqp: n > w

S n < w + 1
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
w, n: nat
lct: lc_loc 0 (w, Bd n)
H: (w, Bd n) ∈d t
ineqrw: (n ?= w) = Gt
ineqp: n > w

S n < w + 1
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom
w, n: nat
lct: n < w + 0
H: (w, Bd n) ∈d t
ineqrw: (n ?= w) = Gt
ineqp: n > w

S n < w + 1
lia. Qed. (** ** Upper and lower bounds on free variables after opening *) (******************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u w l x, l ∈ t -> x ∈ free (open_loc u (w, l)) -> l = Fr x /\ x ∈ free t \/ x ∈ free u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u w l x, l ∈ t -> x ∈ free (open_loc u (w, l)) -> l = Fr x /\ x ∈ free t \/ x ∈ free u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w: nat
l: LN
x: atom
lin: l ∈ t
xin: x ∈ free (open_loc u (w, l))

l = Fr x /\ x ∈ free t \/ x ∈ free u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w: nat
l: LN
x: atom
lin: l ∈ t
xin: Fr x ∈ open_loc u (w, l)

l = Fr x /\ x ∈ free t \/ x ∈ free u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w: nat
l: LN
x: atom
lin: l ∈ t
xin: Fr x ∈ open_loc u (w, l)

l = Fr x /\ Fr x ∈ t \/ Fr x ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w: nat
y, x: atom
lin: Fr y ∈ t
xin: Fr x ∈ open_loc u (w, Fr y)

Fr y = Fr x /\ Fr x ∈ t \/ Fr x ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w, n: nat
x: atom
lin: Bd n ∈ t
xin: Fr x ∈ open_loc u (w, Bd n)
Bd n = Fr x /\ Fr x ∈ t \/ Fr x ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w: nat
y, x: atom
lin: Fr y ∈ t
xin: Fr x ∈ open_loc u (w, Fr y)

Fr y = Fr x /\ Fr x ∈ t \/ Fr x ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w: nat
y, x: atom
lin: Fr y ∈ t
xin: Fr x ∈ open_loc u (w, Fr y)

Fr y = Fr x /\ Fr x ∈ t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w: nat
y, x: atom
lin: Fr y ∈ t
xin: x = y

Fr y = Fr x /\ Fr x ∈ t
inverts xin...
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w, n: nat
x: atom
lin: Bd n ∈ t
xin: Fr x ∈ open_loc u (w, Bd n)

Bd n = Fr x /\ Fr x ∈ t \/ Fr x ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w, n: nat
x: atom
lin: Bd n ∈ t
xin: Fr x ∈ open_loc u (w, Bd n)

Fr x ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w, n: nat
x: atom
lin: Bd n ∈ t
xin: Fr x ∈ match n ?= w with | Eq => u | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end

Fr x ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w, n: nat
x: atom
lin: Bd n ∈ t
xin: Fr x ∈ ret (Bd n)
ineqrw: (n ?= w) = Lt
ineqp: n < w

Fr x ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w: nat
x: atom
lin: Bd w ∈ t
xin: Fr x ∈ u
ineqrw: (w ?= w) = Eq
Fr x ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w, n: nat
x: atom
lin: Bd n ∈ t
xin: Fr x ∈ ret (Bd (n - 1))
ineqrw: (n ?= w) = Gt
ineqp: n > w
Fr x ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w, n: nat
x: atom
lin: Bd n ∈ t
xin: Fr x ∈ ret (Bd n)
ineqrw: (n ?= w) = Lt
ineqp: n < w

Fr x ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w, n: nat
x: atom
lin: Bd n ∈ t
ineqrw: (n ?= w) = Lt
ineqp: n < w

~ Fr x ∈ ret (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w, n: nat
x: atom
lin: Bd n ∈ t
ineqrw: (n ?= w) = Lt
ineqp: n < w

Fr x <> Bd n
easy.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w: nat
x: atom
lin: Bd w ∈ t
xin: Fr x ∈ u
ineqrw: (w ?= w) = Eq

Fr x ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w, n: nat
x: atom
lin: Bd n ∈ t
xin: Fr x ∈ ret (Bd (n - 1))
ineqrw: (n ?= w) = Gt
ineqp: n > w
Fr x ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w: nat
x: atom
lin: Bd w ∈ t
xin: Fr x ∈ u
ineqrw: (w ?= w) = Eq

Fr x ∈ u
assumption.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w, n: nat
x: atom
lin: Bd n ∈ t
xin: Fr x ∈ ret (Bd (n - 1))
ineqrw: (n ?= w) = Gt
ineqp: n > w

Fr x ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w, n: nat
x: atom
lin: Bd n ∈ t
xin: Fr x ∈ ret (Bd (n - 1))
ineqrw: (n ?= w) = Gt
ineqp: n > w

Fr x ∈ u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w, n: nat
x: atom
lin: Bd n ∈ t
ineqrw: (n ?= w) = Gt
ineqp: n > w

~ Fr x ∈ ret (Bd (n - 1))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w, n: nat
x: atom
lin: Bd n ∈ t
ineqrw: (n ?= w) = Gt
ineqp: n > w

Fr x <> Bd (n - 1)
easy. } Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u x, x ∈ free (t '(u)) -> x ∈ free t \/ x ∈ free u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u x, x ∈ free (t '(u)) -> x ∈ free t \/ x ∈ free u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x: atom
xin: x ∈ free (t '(u))

x ∈ free t \/ x ∈ free u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x: atom
xin: exists w l1, (w, l1) ∈d t /\ x ∈ free (open_loc u (w, l1))

x ∈ free t \/ x ∈ free u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x: atom
w: nat
l: LN
hin: (w, l) ∈d t
H: x ∈ free (open_loc u (w, l))

x ∈ free t \/ x ∈ free u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x: atom
w: nat
l: LN
hin: l ∈ t
H: x ∈ free (open_loc u (w, l))

x ∈ free t \/ x ∈ free u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x: atom
w: nat
l: LN
hin: l ∈ t
H: x ∈ free (open_loc u (w, l))

l = Fr x /\ x ∈ free t \/ x ∈ free u
eauto using free_open_upper_local. Qed. (* LNgen 1: fv-open-upper *)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u, FV (t '(u)) ⊆ FV t ∪ FV u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u, FV (t '(u)) ⊆ FV t ∪ FV u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN

FV (t '(u)) ⊆ FV t ∪ FV u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
a: AtomSet.elt

a `in` FV (t '(u)) -> a `in` (FV t ∪ FV u)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
a: AtomSet.elt

a `in` FV (t '(u)) -> a `in` FV t \/ a `in` FV u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
a: AtomSet.elt

a ∈ free (t '(u)) -> a ∈ free t \/ a ∈ free u
auto using free_open_upper. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u x, x ∈ free t -> x ∈ free (t '(u))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u x, x ∈ free t -> x ∈ free (t '(u))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x: atom
xin: x ∈ free t

x ∈ free (t '(u))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x: atom
xin: Fr x ∈ t

x ∈ free (t '(u))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x: atom
xin: exists e : nat, (e, Fr x) ∈d t

x ∈ free (t '(u))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x: atom
w: nat
xin: (w, Fr x) ∈d t

x ∈ free (t '(u))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x: atom
w: nat
xin: (w, Fr x) ∈d t

exists w l1, (w, l1) ∈d t /\ x ∈ free (open_loc u (w, l1))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x: atom
w: nat
xin: (w, Fr x) ∈d t

exists w l1, (w, l1) ∈d t /\ Fr x ∈ open_loc u (w, l1)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
x: atom
w: nat
xin: (w, Fr x) ∈d t

(w, Fr x) ∈d t /\ Fr x ∈ open_loc u (w, Fr x)
now autorewrite with tea_local. Qed. (* LNgen 2: fv-open-lower *)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u, FV t ⊆ FV (t '(u))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u, FV t ⊆ FV (t '(u))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN

FV t ⊆ FV (t '(u))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
a: AtomSet.elt

a `in` FV t -> a `in` FV (t '(u))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
a: AtomSet.elt

a ∈ free t -> a ∈ free (t '(u))
apply free_open_lower. Qed. (** ** Opening a locally closed term is the identity *) (**************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u w l, lc_loc 0 (w, l) -> open_loc u (w, l) = ret l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u w l, lc_loc 0 (w, l) -> open_loc u (w, l) = ret l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w: nat
l: LN
hyp: lc_loc 0 (w, l)

open_loc u (w, l) = ret l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w: nat
a: atom
hyp: lc_loc 0 (w, Fr a)

open_loc u (w, Fr a) = ret (Fr a)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w, n: nat
hyp: lc_loc 0 (w, Bd n)
open_loc u (w, Bd n) = ret (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w: nat
a: atom
hyp: lc_loc 0 (w, Fr a)

open_loc u (w, Fr a) = ret (Fr a)
reflexivity.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w, n: nat
hyp: lc_loc 0 (w, Bd n)

open_loc u (w, Bd n) = ret (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
w, n: nat
hyp: n < w + 0

match n ?= w with | Eq => u | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end = ret (Bd n)
compare naturals n and w; unfold_lia. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u, LC t -> t '(u) = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u, LC t -> t '(u) = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
lc: LC t

t '(u) = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
lc: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)

t '(u) = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
lc: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)

forall w l, (w, l) ∈d t -> open_loc u (w, l) = ret l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
lc: forall w l, (w, l) ∈d t -> lc_loc 0 (w, l)
w: nat
l: LN
lin: (w, l) ∈d t

open_loc u (w, l) = ret l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
w: nat
l: LN
lc: lc_loc 0 (w, l)
lin: (w, l) ∈d t

open_loc u (w, l) = ret l
destruct l; auto using open_lc_local. Qed. (** ** Opening followed by substitution *) (**************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u1 u2 x, LC u2 -> subst x u2 ∘ open_loc u1 = open_loc (u1 '{ x ~> u2}) ⋆5 subst_loc x u2 ∘ extract
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u1 u2 x, LC u2 -> subst x u2 ∘ open_loc u1 = open_loc (u1 '{ x ~> u2}) ⋆5 subst_loc x u2 ∘ extract
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2

subst x u2 ∘ open_loc u1 = open_loc (u1 '{ x ~> u2}) ⋆5 subst_loc x u2 ∘ extract
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
l: LN

(subst x u2 ∘ open_loc u1) (w, l) = (open_loc (u1 '{ x ~> u2}) ⋆5 subst_loc x u2 ∘ extract) (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
l: LN

(subst x u2 ∘ open_loc u1) (w, l) = bindd (open_loc (u1 '{ x ~> u2}) ⦿ w) ((subst_loc x u2 ∘ extract) (w, l))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
l: LN

match l with | Fr x => ret (Fr x) | Bd n => match n ?= w with | Eq => u1 | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end end '{ x ~> u2} = bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) (subst_loc x u2 l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat

ret (Fr x) '{ x ~> u2} = bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) (subst_loc x u2 (Fr x))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
a: atom
H: a <> x
ret (Fr a) '{ x ~> u2} = bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) (subst_loc x u2 (Fr a))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w, n: nat
match n ?= w with | Eq => u1 | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end '{ x ~> u2} = bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) (subst_loc x u2 (Bd n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat

ret (Fr x) '{ x ~> u2} = bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) (subst_loc x u2 (Fr x))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat

subst_loc x u2 (Fr x) = bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) (subst_loc x u2 (Fr x))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat

(if x == x then u2 else ret (Fr x)) = bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) (if x == x then u2 else ret (Fr x))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
DESTR_EQ, DESTR_EQs: x = x

u2 = bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) u2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
DESTR_EQ, DESTR_EQs: x = x

bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) u2 = u2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
DESTR_EQ, DESTR_EQs: x = x

forall w0 (a : LN), (w0, a) ∈d u2 -> open_loc (u1 '{ x ~> u2}) (incr w (w0, a)) = ret a
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
DESTR_EQ, DESTR_EQs: x = x
w0: nat
a: LN
H: (w0, a) ∈d u2

open_loc (u1 '{ x ~> u2}) (incr w (w0, a)) = ret a
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
DESTR_EQ, DESTR_EQs: x = x
w0: nat
n: atom
H: (w0, Fr n) ∈d u2

open_loc (u1 '{ x ~> u2}) (incr w (w0, Fr n)) = ret (Fr n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
DESTR_EQ, DESTR_EQs: x = x
w0, n: nat
H: (w0, Bd n) ∈d u2
open_loc (u1 '{ x ~> u2}) (incr w (w0, Bd n)) = ret (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
DESTR_EQ, DESTR_EQs: x = x
w0: nat
n: atom
H: (w0, Fr n) ∈d u2

open_loc (u1 '{ x ~> u2}) (incr w (w0, Fr n)) = ret (Fr n)
reflexivity.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
DESTR_EQ, DESTR_EQs: x = x
w0, n: nat
H: (w0, Bd n) ∈d u2

open_loc (u1 '{ x ~> u2}) (incr w (w0, Bd n)) = ret (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: forall w l, (w, l) ∈d u2 -> lc_loc 0 (w, l)
w: nat
DESTR_EQ, DESTR_EQs: x = x
w0, n: nat
H: (w0, Bd n) ∈d u2

open_loc (u1 '{ x ~> u2}) (incr w (w0, Bd n)) = ret (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: forall w l, (w, l) ∈d u2 -> match l with | Fr _ => True | Bd n => n < w + 0 end
w: nat
DESTR_EQ, DESTR_EQs: x = x
w0, n: nat
H: (w0, Bd n) ∈d u2

open_loc (u1 '{ x ~> u2}) (incr w (w0, Bd n)) = ret (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: forall w l, (w, l) ∈d u2 -> match l with | Fr _ => True | Bd n => n < w + 0 end
w: nat
DESTR_EQ, DESTR_EQs: x = x
w0, n: nat
H: (w0, Bd n) ∈d u2

match n ?= w ● w0 with | Eq => u1 '{ x ~> u2} | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end = ret (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: forall w l, (w, l) ∈d u2 -> match l with | Fr _ => True | Bd n => n < w + 0 end
w: nat
DESTR_EQ, DESTR_EQs: x = x
w0: nat
ineqrw: (w ● w0 ?= w ● w0) = Eq
H: (w0, Bd (w ● w0)) ∈d u2

u1 '{ x ~> u2} = ret (Bd (w ● w0))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: forall w l, (w, l) ∈d u2 -> match l with | Fr _ => True | Bd n => n < w + 0 end
w: nat
DESTR_EQ, DESTR_EQs: x = x
w0, n: nat
H: (w0, Bd n) ∈d u2
ineqrw: (n ?= w ● w0) = Gt
ineqp: n > w ● w0
n - 1 = n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: forall w l, (w, l) ∈d u2 -> match l with | Fr _ => True | Bd n => n < w + 0 end
w: nat
DESTR_EQ, DESTR_EQs: x = x
w0: nat
ineqrw: (w ● w0 ?= w ● w0) = Eq
H: (w0, Bd (w ● w0)) ∈d u2

u1 '{ x ~> u2} = ret (Bd (w ● w0))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
w, w0: nat
lcu2: match Bd (w ● w0) with | Fr _ => True | Bd n => n < w0 + 0 end
DESTR_EQ, DESTR_EQs: x = x
ineqrw: (w ● w0 ?= w ● w0) = Eq
H: (w0, Bd (w ● w0)) ∈d u2

u1 '{ x ~> u2} = ret (Bd (w ● w0))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
w, w0: nat
lcu2: w ● w0 < w0 + 0
DESTR_EQ, DESTR_EQs: x = x
ineqrw: (w ● w0 ?= w ● w0) = Eq
H: (w0, Bd (w ● w0)) ∈d u2

u1 '{ x ~> u2} = ret (Bd (w ● w0))
unfold_lia.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: forall w l, (w, l) ∈d u2 -> match l with | Fr _ => True | Bd n => n < w + 0 end
w: nat
DESTR_EQ, DESTR_EQs: x = x
w0, n: nat
H: (w0, Bd n) ∈d u2
ineqrw: (n ?= w ● w0) = Gt
ineqp: n > w ● w0

n - 1 = n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: forall w l, (w, l) ∈d u2 -> match l with | Fr _ => True | Bd n => n < w + 0 end
w: nat
DESTR_EQ, DESTR_EQs: x = x
w0, n: nat
H: (w0, Bd n) ∈d u2
ineqrw: (n ?= w ● w0) = Gt
ineqp: n > w ● w0

n - 1 = n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
w0, n: nat
lcu2: match Bd n with | Fr _ => True | Bd n => n < w0 + 0 end
w: nat
DESTR_EQ, DESTR_EQs: x = x
H: (w0, Bd n) ∈d u2
ineqrw: (n ?= w ● w0) = Gt
ineqp: n > w ● w0

n - 1 = n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
w0, n: nat
lcu2: n < w0 + 0
w: nat
DESTR_EQ, DESTR_EQs: x = x
H: (w0, Bd n) ∈d u2
ineqrw: (n ?= w ● w0) = Gt
ineqp: n > w ● w0

n - 1 = n
unfold_lia. }
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
a: atom
H: a <> x

ret (Fr a) '{ x ~> u2} = bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) (subst_loc x u2 (Fr a))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
a: atom
H: a <> x

subst_loc x u2 (Fr a) = bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) (subst_loc x u2 (Fr a))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
a: atom
H: a <> x

(if x == a then u2 else ret (Fr a)) = bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) (if x == a then u2 else ret (Fr a))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
a: atom
H: a <> x
DESTR_NEQ: x <> a
DESTR_NEQs: a <> x

ret (Fr a) = bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) (ret (Fr a))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
a: atom
H: a <> x
DESTR_NEQ: x <> a
DESTR_NEQs: a <> x

(eq ∘ ret) (Fr a) ((bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) ∘ ret) (Fr a))
now rewrite (kdm_bindd0).
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w, n: nat

match n ?= w with | Eq => u1 | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end '{ x ~> u2} = bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) (subst_loc x u2 (Bd n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w, n: nat
ineqrw: (n ?= w) = Lt
ineqp: n < w

ret (Bd n) '{ x ~> u2} = bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) (ret (Bd n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
ineqrw: (w ?= w) = Eq
u1 '{ x ~> u2} = bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) (ret (Bd w))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w, n: nat
ineqrw: (n ?= w) = Gt
ineqp: n > w
ret (Bd (n - 1)) '{ x ~> u2} = bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) (ret (Bd n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w, n: nat
ineqrw: (n ?= w) = Lt
ineqp: n < w

ret (Bd n) '{ x ~> u2} = bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) (ret (Bd n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w, n: nat
ineqrw: (n ?= w) = Lt
ineqp: n < w

subst_loc x u2 (Bd n) = bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) (ret (Bd n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w, n: nat
ineqrw: (n ?= w) = Lt
ineqp: n < w

subst_loc x u2 (Bd n) = (bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) ∘ ret) (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w, n: nat
ineqrw: (n ?= w) = Lt
ineqp: n < w

subst_loc x u2 (Bd n) = open_loc (u1 '{ x ~> u2}) (incr w (ret (Bd n)))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w, n: nat
ineqrw: (n ?= w) = Lt
ineqp: n < w

ret (Bd n) = match n ?= w ● Ƶ with | Eq => u1 '{ x ~> u2} | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w, n: nat
ineqrw: (n ?= w) = Lt
ineqp: n < w

ret (Bd n) = match n ?= w with | Eq => u1 '{ x ~> u2} | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end
compare naturals n and w.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
ineqrw: (w ?= w) = Eq

u1 '{ x ~> u2} = bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) (ret (Bd w))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
ineqrw: (w ?= w) = Eq

u1 '{ x ~> u2} = (bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) ∘ ret) (Bd w)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
ineqrw: (w ?= w) = Eq

u1 '{ x ~> u2} = (open_loc (u1 '{ x ~> u2}) ○ incr w ∘ ret) (Bd w)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
ineqrw: (w ?= w) = Eq

u1 '{ x ~> u2} = open_loc (u1 '{ x ~> u2}) (incr w (ret (Bd w)))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
ineqrw: (w ?= w) = Eq

u1 '{ x ~> u2} = match w ?= w ● Ƶ with | Eq => u1 '{ x ~> u2} | Lt => ret (Bd w) | Gt => ret (Bd (w - 1)) end
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w: nat
ineqrw: (w ?= w) = Eq

u1 '{ x ~> u2} = match w ?= w with | Eq => u1 '{ x ~> u2} | Lt => ret (Bd w) | Gt => ret (Bd (w - 1)) end
compare naturals w and w.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w, n: nat
ineqrw: (n ?= w) = Gt
ineqp: n > w

ret (Bd (n - 1)) '{ x ~> u2} = bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) (ret (Bd n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w, n: nat
ineqrw: (n ?= w) = Gt
ineqp: n > w

subst_loc x u2 (Bd (n - 1)) = bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) (ret (Bd n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w, n: nat
ineqrw: (n ?= w) = Gt
ineqp: n > w

subst_loc x u2 (Bd (n - 1)) = (bindd (open_loc (u1 '{ x ~> u2}) ○ incr w) ∘ ret) (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w, n: nat
ineqrw: (n ?= w) = Gt
ineqp: n > w

subst_loc x u2 (Bd (n - 1)) = (open_loc (u1 '{ x ~> u2}) ○ incr w ∘ ret) (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w, n: nat
ineqrw: (n ?= w) = Gt
ineqp: n > w

subst_loc x u2 (Bd (n - 1)) = open_loc (u1 '{ x ~> u2}) (incr w (ret (Bd n)))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w, n: nat
ineqrw: (n ?= w) = Gt
ineqp: n > w

ret (Bd (n - 1)) = match n ?= w ● Ƶ with | Eq => u1 '{ x ~> u2} | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
x: atom
lcu2: LC u2
w, n: nat
ineqrw: (n ?= w) = Gt
ineqp: n > w

ret (Bd (n - 1)) = match n ?= w with | Eq => u1 '{ x ~> u2} | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end
compare naturals n and w. Qed. (* LNgen 10: subst-open *)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u1 u2 t x, LC u2 -> (t '(u1)) '{ x ~> u2} = (t '{ x ~> u2}) '(u1 '{ x ~> u2})
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u1 u2 t x, LC u2 -> (t '(u1)) '{ x ~> u2} = (t '{ x ~> u2}) '(u1 '{ x ~> u2})
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
t: U LN
x: atom
lc: LC u2

(t '(u1)) '{ x ~> u2} = (t '{ x ~> u2}) '(u1 '{ x ~> u2})
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
t: U LN
x: atom
lc: LC u2

(subst x u2 ∘ open u1) t = (open (u1 '{ x ~> u2}) ∘ subst x u2) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
t: U LN
x: atom
lc: LC u2

(bind (subst_loc x u2) ∘ bindd (open_loc u1)) t = (bindd (open_loc (u1 '{ x ~> u2})) ∘ bind (subst_loc x u2)) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
t: U LN
x: atom
lc: LC u2

bindd (subst_loc x u2 ⋆ open_loc u1) t = (bindd (open_loc (u1 '{ x ~> u2})) ∘ bind (subst_loc x u2)) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
t: U LN
x: atom
lc: LC u2

bindd (subst_loc x u2 ⋆ open_loc u1) t = bindd ((fun '(w, t) => bindd (open_loc (u1 '{ x ~> u2}) ⦿ w) t) ∘ map (subst_loc x u2)) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
t: U LN
x: atom
lc: LC u2

subst_loc x u2 ⋆ open_loc u1 = (fun '(w, t) => bindd (open_loc (u1 '{ x ~> u2}) ⦿ w) t) ∘ map (subst_loc x u2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
t: U LN
x: atom
lc: LC u2

subst x u2 ∘ open_loc u1 = (fun '(w, t) => bindd (open_loc (u1 '{ x ~> u2}) ⦿ w) t) ∘ map (subst_loc x u2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
t: U LN
x: atom
lc: LC u2

subst x u2 ∘ open_loc u1 = (fun '(w, t) => bindd (open_loc (u1 '{ x ~> u2}) ⦿ w) t) ∘ map (subst_loc x u2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
t: U LN
x: atom
lc: LC u2

open_loc (u1 '{ x ~> u2}) ⋆5 subst_loc x u2 ∘ extract = (fun '(w, t) => bindd (open_loc (u1 '{ x ~> u2}) ⦿ w) t) ∘ map (subst_loc x u2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u1, u2: T LN
t: U LN
x: atom
lc: LC u2

open_loc (u1 '{ x ~> u2}) ⋆5 subst_loc x u2 ∘ extract = (fun '(w, t) => bindd (open_loc (u1 '{ x ~> u2}) ⦿ w) t) ∘ map (subst_loc x u2)
now ext [w t']. Qed. (** ** Closing followed by substitution *) (**************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (y : AtomSet.elt) u (depth : nat), LC u -> y `notin` FV u -> mapd (close_loc y ⦿ depth) u = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (y : AtomSet.elt) u (depth : nat), LC u -> y `notin` FV u -> mapd (close_loc y ⦿ depth) u = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: LC u
Hnin: y `notin` FV u

mapd (close_loc y ⦿ depth) u = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: LC u
Hnin: y `notin` FV u

mapd (close_loc y ⦿ depth) u = id u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: LC u
Hnin: y `notin` FV u

mapd (close_loc y ⦿ depth) u = mapd extract u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: LC u
Hnin: y `notin` FV u

forall (e : nat) (a : LN), (e, a) ∈d u -> (close_loc y ⦿ depth) (e, a) = extract (e, a)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: LC u
Hnin: y `notin` FV u
e: nat
a: LN
Hin: (e, a) ∈d u

(close_loc y ⦿ depth) (e, a) = extract (e, a)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: LC u
Hnin: y `notin` FV u
e: nat
Hin: (e, Fr y) ∈d u

(close_loc y ⦿ depth) (e, Fr y) = extract (e, Fr y)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: LC u
Hnin: y `notin` FV u
e: nat
a: atom
Hin: (e, Fr a) ∈d u
H: a <> y
(close_loc y ⦿ depth) (e, Fr a) = extract (e, Fr a)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: LC u
Hnin: y `notin` FV u
e, n: nat
Hin: (e, Bd n) ∈d u
(close_loc y ⦿ depth) (e, Bd n) = extract (e, Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: LC u
Hnin: y `notin` FV u
e: nat
Hin: (e, Fr y) ∈d u

(close_loc y ⦿ depth) (e, Fr y) = extract (e, Fr y)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: LC u
Hnin: y `notin` FV u
e: nat
Hin: (e, Fr y) ∈d u

False
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: LC u
Hnin: y `notin` FV u
e: nat
Hin: Fr y ∈ u

False
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: LC u
Hnin: ~ y ∈ free u
e: nat
Hin: Fr y ∈ u

False
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: LC u
Hnin: ~ Fr y ∈ u
e: nat
Hin: Fr y ∈ u

False
easy.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: LC u
Hnin: y `notin` FV u
e: nat
a: atom
Hin: (e, Fr a) ∈d u
H: a <> y

(close_loc y ⦿ depth) (e, Fr a) = extract (e, Fr a)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: LC u
Hnin: y `notin` FV u
e: nat
a: atom
Hin: (e, Fr a) ∈d u
H: a <> y

(if y == a then Bd (depth ● e) else Fr a) = Fr a
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: LC u
Hnin: y `notin` FV u
e: nat
a: atom
Hin: (e, Fr a) ∈d u
H: a <> y
DESTR_NEQ: y <> a
DESTR_NEQs: a <> y

(if y == a then Bd (depth ● e) else Fr a) = Fr a
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: LC u
Hnin: y `notin` FV u
e: nat
a: atom
Hin: (e, Fr a) ∈d u
H: a <> y
DESTR_NEQ: y <> a
DESTR_NEQs: a <> y
e0: y = a

Bd (depth ● e) = Fr a
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: LC u
Hnin: y `notin` FV u
e: nat
a: atom
Hin: (e, Fr a) ∈d u
H: a <> y
DESTR_NEQ: y <> a
DESTR_NEQs: a <> y
n: y <> a
Fr a = Fr a
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: LC u
Hnin: y `notin` FV u
e: nat
a: atom
Hin: (e, Fr a) ∈d u
H: a <> y
DESTR_NEQ: y <> a
DESTR_NEQs: a <> y
n: y <> a

Fr a = Fr a
easy.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: LC u
Hnin: y `notin` FV u
e, n: nat
Hin: (e, Bd n) ∈d u

(close_loc y ⦿ depth) (e, Bd n) = extract (e, Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: LC u
Hnin: y `notin` FV u
e, n: nat
Hin: (e, Bd n) ∈d u

match n ?= depth ● e with | Lt => Bd n | _ => Bd (S n) end = Bd n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: LC u
Hnin: y `notin` FV u
e, n: nat
Hin: (e, Bd n) ∈d u

match n ?= depth + e with | Lt => Bd n | _ => Bd (S n) end = Bd n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth: nat
HLC: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
Hnin: y `notin` FV u
e, n: nat
Hin: (e, Bd n) ∈d u

match n ?= depth + e with | Lt => Bd n | _ => Bd (S n) end = Bd n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth, e, n: nat
HLC: lc_loc 0 (e, Bd n)
Hnin: y `notin` FV u
Hin: (e, Bd n) ∈d u

match n ?= depth + e with | Lt => Bd n | _ => Bd (S n) end = Bd n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: AtomSet.elt
u: T LN
depth, e, n: nat
HLC: n < e + 0
Hnin: y `notin` FV u
Hin: (e, Bd n) ∈d u

match n ?= depth + e with | Lt => Bd n | _ => Bd (S n) end = Bd n
compare naturals n and (depth + e)%nat. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (x y : atom) u (depth : nat) l, x <> y -> y `notin` FV u -> LC u -> subst_loc x u (close_loc y (depth, l)) = mapd (close_loc y ⦿ depth) (subst_loc x u l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall (x y : atom) u (depth : nat) l, x <> y -> y `notin` FV u -> LC u -> subst_loc x u (close_loc y (depth, l)) = mapd (close_loc y ⦿ depth) (subst_loc x u l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
l: LN
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u

subst_loc x u (close_loc y (depth, l)) = mapd (close_loc y ⦿ depth) (subst_loc x u l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u

subst_loc x u (close_loc y (depth, Fr y)) = mapd (close_loc y ⦿ depth) (subst_loc x u (Fr y))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
a: atom
H: a <> y
subst_loc x u (close_loc y (depth, Fr a)) = mapd (close_loc y ⦿ depth) (subst_loc x u (Fr a))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
n: nat
subst_loc x u (close_loc y (depth, Bd n)) = mapd (close_loc y ⦿ depth) (subst_loc x u (Bd n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u

subst_loc x u (close_loc y (depth, Fr y)) = mapd (close_loc y ⦿ depth) (subst_loc x u (Fr y))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u

subst_loc x u (Bd depth) = mapd (close_loc y ⦿ depth) (subst_loc x u (Fr y))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
DESTR_NEQ: x <> y
DESTR_NEQs: y <> x

subst_loc x u (Bd depth) = mapd (close_loc y ⦿ depth) (subst_loc x u (Fr y))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
DESTR_NEQ: x <> y
DESTR_NEQs: y <> x

subst_loc x u (Bd depth) = mapd (close_loc y ⦿ depth) (ret (Fr y))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
DESTR_NEQ: x <> y
DESTR_NEQs: y <> x

ret (Bd depth) = mapd (close_loc y ⦿ depth) (ret (Fr y))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
DESTR_NEQ: x <> y
DESTR_NEQs: y <> x

ret (Bd depth) = (mapd (close_loc y ⦿ depth) ∘ ret) (Fr y)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
DESTR_NEQ: x <> y
DESTR_NEQs: y <> x

ret (Bd depth) = (ret ∘ close_loc y ⦿ depth ∘ ret) (Fr y)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
DESTR_NEQ: x <> y
DESTR_NEQs: y <> x

ret (Bd depth) = (ret ∘ (close_loc y ⦿ depth ∘ ret)) (Fr y)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
DESTR_NEQ: x <> y
DESTR_NEQs: y <> x

ret (Bd depth) = (ret ∘ (close_loc y ∘ pair depth)) (Fr y)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
DESTR_NEQ: x <> y
DESTR_NEQs: y <> x

ret (Bd depth) = ret (close_loc y (depth, Fr y))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
DESTR_NEQ: x <> y
DESTR_NEQs: y <> x

ret (Bd depth) = ret (if y == y then Bd depth else Fr y)
now compare values y and y.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
a: atom
H: a <> y

subst_loc x u (close_loc y (depth, Fr a)) = mapd (close_loc y ⦿ depth) (subst_loc x u (Fr a))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
a: atom
H: a <> y

subst_loc x u (Fr a) = mapd (close_loc y ⦿ depth) (subst_loc x u (Fr a))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: atom
u: T LN
depth: nat
a: atom
Hneq: a <> y
lc: y `notin` FV u
Hnotin: LC u
H: a <> y
DESTR_EQs: a = a

subst_loc a u (Fr a) = mapd (close_loc y ⦿ depth) (subst_loc a u (Fr a))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
a: atom
H: a <> y
DESTR_NEQ: x <> a
DESTR_NEQs: a <> x
subst_loc x u (Fr a) = mapd (close_loc y ⦿ depth) (subst_loc x u (Fr a))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: atom
u: T LN
depth: nat
a: atom
Hneq: a <> y
lc: y `notin` FV u
Hnotin: LC u
H: a <> y
DESTR_EQs: a = a

subst_loc a u (Fr a) = mapd (close_loc y ⦿ depth) (subst_loc a u (Fr a))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
y: atom
u: T LN
depth: nat
a: atom
Hneq: a <> y
lc: y `notin` FV u
Hnotin: LC u
H: a <> y
DESTR_EQs: a = a

u = mapd (close_loc y ⦿ depth) u
rewrite close_notin_FV; auto.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
a: atom
H: a <> y
DESTR_NEQ: x <> a
DESTR_NEQs: a <> x

subst_loc x u (Fr a) = mapd (close_loc y ⦿ depth) (subst_loc x u (Fr a))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
a: atom
H: a <> y
DESTR_NEQ: x <> a
DESTR_NEQs: a <> x

ret (Fr a) = mapd (close_loc y ⦿ depth) (ret (Fr a))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
a: atom
H: a <> y
DESTR_NEQ: x <> a
DESTR_NEQs: a <> x

ret (Fr a) = (mapd (close_loc y ⦿ depth) ∘ ret) (Fr a)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
a: atom
H: a <> y
DESTR_NEQ: x <> a
DESTR_NEQs: a <> x

ret (Fr a) = (ret ∘ close_loc y ⦿ depth ∘ ret) (Fr a)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
a: atom
H: a <> y
DESTR_NEQ: x <> a
DESTR_NEQs: a <> x

ret (Fr a) = (ret ∘ (close_loc y ⦿ depth ∘ ret)) (Fr a)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
a: atom
H: a <> y
DESTR_NEQ: x <> a
DESTR_NEQs: a <> x

ret (Fr a) = (ret ∘ (close_loc y ∘ pair depth)) (Fr a)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
a: atom
H: a <> y
DESTR_NEQ: x <> a
DESTR_NEQs: a <> x

ret (Fr a) = ret (if y == a then Bd depth else Fr a)
destruct_eq_args y a.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
n: nat

subst_loc x u (close_loc y (depth, Bd n)) = mapd (close_loc y ⦿ depth) (subst_loc x u (Bd n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
n: nat

subst_loc x u match n ?= depth with | Lt => Bd n | _ => Bd (S n) end = mapd (close_loc y ⦿ depth) (ret (Bd n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
n: nat

subst_loc x u match n ?= depth with | Lt => Bd n | _ => Bd (S n) end = (mapd (close_loc y ⦿ depth) ∘ ret) (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
n: nat

subst_loc x u match n ?= depth with | Lt => Bd n | _ => Bd (S n) end = (ret ∘ close_loc y ⦿ depth ∘ ret) (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
n: nat

subst_loc x u match n ?= depth with | Lt => Bd n | _ => Bd (S n) end = (ret ∘ (close_loc y ⦿ depth ∘ ret)) (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
n: nat

subst_loc x u match n ?= depth with | Lt => Bd n | _ => Bd (S n) end = (ret ∘ (close_loc y ∘ pair depth)) (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x, y: atom
u: T LN
depth: nat
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
n: nat

subst_loc x u match n ?= depth with | Lt => Bd n | _ => Bd (S n) end = ret match n ?= depth with | Lt => Bd n | _ => Bd (S n) end
compare naturals n and depth. Qed. (* LNgen 13: subst-close *)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u t (x y : atom), x <> y -> y `notin` FV u -> LC u -> ('[y] t) '{ x ~> u} = '[y] (t '{ x ~> u})
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u t (x y : atom), x <> y -> y `notin` FV u -> LC u -> ('[y] t) '{ x ~> u} = '[y] (t '{ x ~> u})
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x, y: atom
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u

('[y] t) '{ x ~> u} = '[y] (t '{ x ~> u})
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x, y: atom
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u

(subst x u ∘ close y) t = (close y ∘ subst x u) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x, y: atom
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u

(bind (subst_loc x u) ∘ mapd (close_loc y)) t = (mapd (close_loc y) ∘ bind (subst_loc x u)) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x, y: atom
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u

bindd (subst_loc x u ∘ close_loc y) t = (mapd (close_loc y) ∘ bind (subst_loc x u)) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x, y: atom
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u

bindd (subst_loc x u ∘ close_loc y) t = bindd (fun '(w, a) => mapd (close_loc y ⦿ w) (subst_loc x u a)) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x, y: atom
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u

subst_loc x u ∘ close_loc y = (fun '(w, a) => mapd (close_loc y ⦿ w) (subst_loc x u a))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x, y: atom
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u

subst_loc x u ○ close_loc y = (fun '(w, a) => mapd (close_loc y ⦿ w) (subst_loc x u a))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x, y: atom
Hneq: x <> y
lc: y `notin` FV u
Hnotin: LC u
depth: nat
l: LN

subst_loc x u (close_loc y (depth, l)) = mapd (close_loc y ⦿ depth) (subst_loc x u l)
apply subst_close_local; auto. Qed. (** ** Decompose opening into variable opening followed by substitution *) (**************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u x w l, l <> Fr x -> (subst x u ∘ open_loc (ret (Fr x))) (w, l) = open_loc u (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u x w l, l <> Fr x -> (subst x u ∘ open_loc (ret (Fr x))) (w, l) = open_loc u (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x: atom
w: nat
l: LN
neq: l <> Fr x

(subst x u ∘ open_loc (ret (Fr x))) (w, l) = open_loc u (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x: atom
w: nat
l: LN
neq: l <> Fr x

open_loc (ret (Fr x)) (w, l) '{ x ~> u} = open_loc u (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x: atom
w: nat
neq: Fr x <> Fr x

open_loc (ret (Fr x)) (w, Fr x) '{ x ~> u} = open_loc u (w, Fr x)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x: atom
w: nat
a: atom
neq: Fr a <> Fr x
H: a <> x
open_loc (ret (Fr x)) (w, Fr a) '{ x ~> u} = open_loc u (w, Fr a)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x: atom
w, n: nat
neq: Bd n <> Fr x
open_loc (ret (Fr x)) (w, Bd n) '{ x ~> u} = open_loc u (w, Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x: atom
w: nat
neq: Fr x <> Fr x

open_loc (ret (Fr x)) (w, Fr x) '{ x ~> u} = open_loc u (w, Fr x)
contradiction.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x: atom
w: nat
a: atom
neq: Fr a <> Fr x
H: a <> x

open_loc (ret (Fr x)) (w, Fr a) '{ x ~> u} = open_loc u (w, Fr a)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x: atom
w: nat
a: atom
neq: Fr a <> Fr x
H: a <> x

ret (Fr a) '{ x ~> u} = ret (Fr a)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x: atom
w: nat
a: atom
neq: Fr a <> Fr x
H: a <> x

subst_loc x u (Fr a) = ret (Fr a)
now rewrite subst_loc_neq.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x: atom
w, n: nat
neq: Bd n <> Fr x

open_loc (ret (Fr x)) (w, Bd n) '{ x ~> u} = open_loc u (w, Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x: atom
w, n: nat
neq: Bd n <> Fr x

match n ?= w with | Eq => ret (Fr x) | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end '{ x ~> u} = match n ?= w with | Eq => u | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x: atom
w, n: nat
neq: Bd n <> Fr x
ineqrw: (n ?= w) = Lt
ineqp: n < w

ret (Bd n) '{ x ~> u} = ret (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x: atom
w: nat
ineqrw: (w ?= w) = Eq
neq: Bd w <> Fr x
ret (Fr x) '{ x ~> u} = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x: atom
w, n: nat
neq: Bd n <> Fr x
ineqrw: (n ?= w) = Gt
ineqp: n > w
ret (Bd (n - 1)) '{ x ~> u} = ret (Bd (n - 1))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x: atom
w: nat
ineqrw: (w ?= w) = Eq
neq: Bd w <> Fr x

ret (Fr x) '{ x ~> u} = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x: atom
w, n: nat
neq: Bd n <> Fr x
ineqrw: (n ?= w) = Gt
ineqp: n > w
ret (Bd (n - 1)) '{ x ~> u} = ret (Bd (n - 1))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x: atom
w, n: nat
neq: Bd n <> Fr x
ineqrw: (n ?= w) = Gt
ineqp: n > w

ret (Bd (n - 1)) '{ x ~> u} = ret (Bd (n - 1))
now rewrite subst_ret, subst_loc_b. Qed. (* This theorem would be easy to prove with [subst_open_eq], but applying that theorem would introduce a local closure hypothesis for <<u>> that is not actually required for our purposes. *) (* LNgen 14: subst-intro *)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u t x, x `notin` FV t -> t '(u) = (t '(ret (Fr x))) '{ x ~> u}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u t x, x `notin` FV t -> t '(u) = (t '(ret (Fr x))) '{ x ~> u}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
fresh: x `notin` FV t

t '(u) = (t '(ret (Fr x))) '{ x ~> u}
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
fresh: x `notin` FV t

t '(u) = (subst x u ∘ open (ret (Fr x))) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
fresh: x `notin` FV t

bindd (open_loc u) t = (bind (subst_loc x u) ∘ bindd (open_loc (ret (Fr x)))) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
fresh: x `notin` FV t

bindd (open_loc u) t = bindd (subst_loc x u ⋆ open_loc (ret (Fr x))) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
fresh: x `notin` FV t

forall w (a : LN), (w, a) ∈d t -> open_loc u (w, a) = (subst_loc x u ⋆ open_loc (ret (Fr x))) (w, a)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
fresh: x `notin` FV t
w: nat
a: LN
hin: (w, a) ∈d t

open_loc u (w, a) = (subst_loc x u ⋆ open_loc (ret (Fr x))) (w, a)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
fresh: x `notin` FV t
w: nat
a: LN
hin: (w, a) ∈d t

a <> Fr x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
fresh: x `notin` FV t
w: nat
a: LN
hin: (w, a) ∈d t
H: a <> Fr x
open_loc u (w, a) = (subst_loc x u ⋆ open_loc (ret (Fr x))) (w, a)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
fresh: x `notin` FV t
w: nat
a: LN
hin: (w, a) ∈d t

a <> Fr x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
fresh: x `notin` FV t
w: nat
a: LN
hin: a ∈ t

a <> Fr x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
fresh: ~ x ∈ free t
w: nat
a: LN
hin: a ∈ t

a <> Fr x
eapply ninf_in_neq in fresh; eauto.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x: atom
fresh: x `notin` FV t
w: nat
a: LN
hin: (w, a) ∈d t
H: a <> Fr x

open_loc u (w, a) = (subst_loc x u ⋆ open_loc (ret (Fr x))) (w, a)
now rewrite <- (open_spec_local u x). Qed. (** ** Opening by a variable, followed by non-equal substitution *) (**************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u (x y : atom), x <> y -> LC u -> subst x u ∘ open_loc (ret (Fr y)) = open_loc (ret (Fr y)) ⋆5 subst_loc x u ∘ extract
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u (x y : atom), x <> y -> LC u -> subst x u ∘ open_loc (ret (Fr y)) = open_loc (ret (Fr y)) ⋆5 subst_loc x u ∘ extract
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x, y: atom
neq: x <> y
lc: LC u

subst x u ∘ open_loc (ret (Fr y)) = open_loc (ret (Fr y)) ⋆5 subst_loc x u ∘ extract
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x, y: atom
neq: x <> y
lc: LC u

open_loc (ret (Fr y) '{ x ~> u}) ⋆5 subst_loc x u ∘ extract = open_loc (ret (Fr y)) ⋆5 subst_loc x u ∘ extract
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x, y: atom
neq: x <> y
lc: LC u

open_loc (subst_loc x u (Fr y)) ⋆5 subst_loc x u ∘ extract = open_loc (ret (Fr y)) ⋆5 subst_loc x u ∘ extract
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
x, y: atom
neq: x <> y
lc: LC u

open_loc (if x == y then u else ret (Fr y)) ⋆5 subst_loc x u ∘ extract = open_loc (ret (Fr y)) ⋆5 subst_loc x u ∘ extract
compare values x and y. Qed. (* LNgen 11: subst-open-var *)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u t (x y : atom), x <> y -> LC u -> (t '(ret (Fr y))) '{ x ~> u} = (t '{ x ~> u}) '(ret (Fr y))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall u t (x y : atom), x <> y -> LC u -> (t '(ret (Fr y))) '{ x ~> u} = (t '{ x ~> u}) '(ret (Fr y))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x, y: atom
neq: x <> y
lc: LC u

(t '(ret (Fr y))) '{ x ~> u} = (t '{ x ~> u}) '(ret (Fr y))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x, y: atom
neq: x <> y
lc: LC u

(subst x u ∘ open (ret (Fr y))) t = (open (ret (Fr y)) ∘ subst x u) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x, y: atom
neq: x <> y
lc: LC u

(bind (subst_loc x u) ∘ bindd (open_loc (ret (Fr y)))) t = (bindd (open_loc (ret (Fr y))) ∘ bind (subst_loc x u)) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x, y: atom
neq: x <> y
lc: LC u

bindd (subst_loc x u ⋆ open_loc (ret (Fr y))) t = bindd ((fun '(w, t) => bindd (open_loc (ret (Fr y)) ⦿ w) t) ∘ map (subst_loc x u)) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x, y: atom
neq: x <> y
lc: LC u

subst_loc x u ⋆ open_loc (ret (Fr y)) = (fun '(w, t) => bindd (open_loc (ret (Fr y)) ⦿ w) t) ∘ map (subst_loc x u)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x, y: atom
neq: x <> y
lc: LC u

subst x u ∘ open_loc (ret (Fr y)) = (fun '(w, t) => bindd (open_loc (ret (Fr y)) ⦿ w) t) ∘ map (subst_loc x u)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x, y: atom
neq: x <> y
lc: LC u

subst x u ∘ open_loc (ret (Fr y)) = (fun '(w, t) => bindd (open_loc (ret (Fr y)) ⦿ w) t) ∘ map (subst_loc x u)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x, y: atom
neq: x <> y
lc: LC u

open_loc (ret (Fr y)) ⋆5 subst_loc x u ∘ extract = (fun '(w, t) => bindd (open_loc (ret (Fr y)) ⦿ w) t) ∘ map (subst_loc x u)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
u: T LN
t: U LN
x, y: atom
neq: x <> y
lc: LC u

open_loc (ret (Fr y)) ⋆5 subst_loc x u ∘ extract = (fun '(w, t) => bindd (open_loc (ret (Fr y)) ⦿ w) t) ∘ map (subst_loc x u)
now ext [w t']. Qed. (* LNgen 12: doesn't make sense here because it mentions concrete syntax *) (** ** Closing, followed by opening *) (**************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x w l, (open_loc (ret (Fr x)) ⋆1 close_loc x) (w, l) = ret l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x w l, (open_loc (ret (Fr x)) ⋆1 close_loc x) (w, l) = ret l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w: nat
l: LN

(open_loc (ret (Fr x)) ⋆1 close_loc x) (w, l) = ret l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w: nat
l: LN

match match l with | Fr y => if x == y then Bd w else Fr y | Bd n => match n ?= w with | Lt => Bd n | _ => Bd (S n) end end with | Fr x => ret (Fr x) | Bd n => match n ?= w with | Eq => ret (Fr x) | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end end = ret l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w: nat
l: LN

match match l with | Fr y => if x == y then Bd w else Fr y | Bd n => match n ?= w with | Lt => Bd n | _ => Bd (S n) end end with | Fr x => ret (Fr x) | Bd n => match n ?= w with | Eq => ret (Fr x) | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end end = ret l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w: nat

match (if x == x then Bd w else Fr x) with | Fr x => ret (Fr x) | Bd n => match n ?= w with | Eq => ret (Fr x) | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end end = ret (Fr x)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w: nat
a: atom
H: a <> x
match (if x == a then Bd w else Fr a) with | Fr x => ret (Fr x) | Bd n => match n ?= w with | Eq => ret (Fr x) | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end end = ret (Fr a)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w, n: nat
match match n ?= w with | Lt => Bd n | _ => Bd (S n) end with | Fr x => ret (Fr x) | Bd n => match n ?= w with | Eq => ret (Fr x) | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end end = ret (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w: nat

match (if x == x then Bd w else Fr x) with | Fr x => ret (Fr x) | Bd n => match n ?= w with | Eq => ret (Fr x) | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end end = ret (Fr x)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w: nat
DESTR_EQ, DESTR_EQs: x = x

match w ?= w with | Eq => ret (Fr x) | Lt => ret (Bd w) | Gt => ret (Bd (w - 1)) end = ret (Fr x)
compare naturals w and w.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w: nat
a: atom
H: a <> x

match (if x == a then Bd w else Fr a) with | Fr x => ret (Fr x) | Bd n => match n ?= w with | Eq => ret (Fr x) | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end end = ret (Fr a)
compare values x and a.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w, n: nat

match match n ?= w with | Lt => Bd n | _ => Bd (S n) end with | Fr x => ret (Fr x) | Bd n => match n ?= w with | Eq => ret (Fr x) | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end end = ret (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w: nat
ineqrw: (w ?= w) = Eq

match S w ?= w with | Eq => ret (Fr x) | Lt => ret (Bd (S w)) | Gt => ret (Bd (S w - 1)) end = ret (Bd w)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w, n: nat
ineqrw: (n ?= w) = Gt
ineqp: n > w
match S n ?= w with | Eq => ret (Fr x) | Lt => ret (Bd (S n)) | Gt => ret (Bd (S n - 1)) end = ret (Bd n)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w, n: nat
ineqrw: (n ?= w) = Gt
ineqp: n > w

match S n ?= w with | Eq => ret (Fr x) | Lt => ret (Bd (S n)) | Gt => ret (Bd (S n - 1)) end = ret (Bd n)
compare naturals (S n) and w. Qed. (* LNgen 15: open_close *)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x t, ('[x] t) '(ret (Fr x)) = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x t, ('[x] t) '(ret (Fr x)) = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t: U LN

('[x] t) '(ret (Fr x)) = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t: U LN

(open (ret (Fr x)) ∘ close x) t = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t: U LN

(bindd (open_loc (ret (Fr x))) ∘ mapd (close_loc x)) t = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t: U LN

bindd (open_loc (ret (Fr x)) ⋆1 close_loc x) t = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t: U LN
w: nat
a: LN
H: (w, a) ∈d t

(open_loc (ret (Fr x)) ⋆1 close_loc x) (w, a) = ret a
auto using open_close_local. Qed. (** ** Opening by a LN reduces to an [mapkr] *) Definition open_LN_loc (u: LN): nat * LN -> LN := fun wl => match wl with | (w, l) => match l with | Fr x => Fr x | Bd n => match Nat.compare n w with | Gt => Bd (n - 1) | Eq => u | Lt => Bd n end end end.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x : LN, open_loc (ret x) = ret ∘ open_LN_loc x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x : LN, open_loc (ret x) = ret ∘ open_LN_loc x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: LN

open_loc (ret x) = ret ∘ open_LN_loc x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: LN
depth: nat
l: LN

open_loc (ret x) (depth, l) = (ret ∘ open_LN_loc x) (depth, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: LN
depth: nat
l: LN

open_loc (ret x) (depth, l) = ret (open_LN_loc x (depth, l))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: LN
depth: nat
n: atom

open_loc (ret x) (depth, Fr n) = ret (open_LN_loc x (depth, Fr n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: LN
depth, n: nat
open_loc (ret x) (depth, Bd n) = ret (open_LN_loc x (depth, Bd n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: LN
depth: nat
n: atom

open_loc (ret x) (depth, Fr n) = ret (open_LN_loc x (depth, Fr n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: LN
depth: nat
n: atom

ret (Fr n) = ret (Fr n)
reflexivity.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: LN
depth, n: nat

open_loc (ret x) (depth, Bd n) = ret (open_LN_loc x (depth, Bd n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: LN
depth, n: nat

match n ?= depth with | Eq => ret x | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end = ret match n ?= depth with | Eq => x | Lt => Bd n | Gt => Bd (n - 1) end
compare naturals n and depth. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall l, open (ret l) = mapd (open_LN_loc l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall l, open (ret l) = mapd (open_LN_loc l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN

open (ret l) = mapd (open_LN_loc l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN

bindd (open_loc (ret l)) = mapd (open_LN_loc l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
t: U LN

bindd (open_loc (ret l)) t = mapd (open_LN_loc l) t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
t: U LN

forall w (a : LN), (w, a) ∈d t -> open_loc (ret l) (w, a) = ret (open_LN_loc l (w, a))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
t: U LN
w: nat
l': LN
l'in: (w, l') ∈d t

open_loc (ret l) (w, l') = ret (open_LN_loc l (w, l'))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
t: U LN
w: nat
n: atom
l'in: (w, Fr n) ∈d t

open_loc (ret l) (w, Fr n) = ret (open_LN_loc l (w, Fr n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
t: U LN
w, n: nat
l'in: (w, Bd n) ∈d t
open_loc (ret l) (w, Bd n) = ret (open_LN_loc l (w, Bd n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
t: U LN
w: nat
n: atom
l'in: (w, Fr n) ∈d t

open_loc (ret l) (w, Fr n) = ret (open_LN_loc l (w, Fr n))
reflexivity.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
t: U LN
w, n: nat
l'in: (w, Bd n) ∈d t

open_loc (ret l) (w, Bd n) = ret (open_LN_loc l (w, Bd n))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
l: LN
t: U LN
w, n: nat
l'in: (w, Bd n) ∈d t

match n ?= w with | Eq => ret l | Lt => ret (Bd n) | Gt => ret (Bd (n - 1)) end = ret match n ?= w with | Eq => l | Lt => Bd n | Gt => Bd (n - 1) end
compare naturals n and w. Qed. (** ** Opening, followed by closing *) (**************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x w l, l <> Fr x -> (close_loc x ⋆1 open_LN_loc (Fr x)) (w, l) = l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x w l, l <> Fr x -> (close_loc x ⋆1 open_LN_loc (Fr x)) (w, l) = l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w: nat
l: LN
neq: l <> Fr x

(close_loc x ⋆1 open_LN_loc (Fr x)) (w, l) = l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w: nat
l: LN
neq: l <> Fr x

match match l with | Fr x => Fr x | Bd n => match n ?= w with | Eq => Fr x | Lt => Bd n | Gt => Bd (n - 1) end end with | Fr y => if x == y then Bd w else Fr y | Bd n => match n ?= w with | Lt => Bd n | _ => Bd (S n) end end = l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w: nat
l: LN
neq: l <> Fr x

match match l with | Fr x => Fr x | Bd n => match n ?= w with | Eq => Fr x | Lt => Bd n | Gt => Bd (n - 1) end end with | Fr y => if x == y then Bd w else Fr y | Bd n => match n ?= w with | Lt => Bd n | _ => Bd (S n) end end = l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w: nat
neq: Fr x <> Fr x

(if x == x then Bd w else Fr x) = Fr x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w: nat
a: atom
neq: Fr a <> Fr x
H: a <> x
(if x == a then Bd w else Fr a) = Fr a
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w, n: nat
neq: Bd n <> Fr x
match match n ?= w with | Eq => Fr x | Lt => Bd n | Gt => Bd (n - 1) end with | Fr y => if x == y then Bd w else Fr y | Bd n => match n ?= w with | Lt => Bd n | _ => Bd (S n) end end = Bd n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w: nat
neq: Fr x <> Fr x

(if x == x then Bd w else Fr x) = Fr x
contradiction.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w: nat
a: atom
neq: Fr a <> Fr x
H: a <> x

(if x == a then Bd w else Fr a) = Fr a
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w: nat
a: atom
neq: Fr a <> Fr x
H: a <> x

(if x == a then Bd w else Fr a) = Fr a
now compare values x and a.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w, n: nat
neq: Bd n <> Fr x

match match n ?= w with | Eq => Fr x | Lt => Bd n | Gt => Bd (n - 1) end with | Fr y => if x == y then Bd w else Fr y | Bd n => match n ?= w with | Lt => Bd n | _ => Bd (S n) end end = Bd n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w, n: nat
neq: Bd n <> Fr x

match match n ?= w with | Eq => Fr x | Lt => Bd n | Gt => Bd (n - 1) end with | Fr y => if x == y then Bd w else Fr y | Bd n => match n ?= w with | Lt => Bd n | _ => Bd (S n) end end = Bd n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w: nat
ineqrw: (w ?= w) = Eq
neq: Bd w <> Fr x

(if x == x then Bd w else Fr x) = Bd w
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w, n: nat
neq: Bd n <> Fr x
ineqrw: (n ?= w) = Gt
ineqp: n > w
match n - 1 ?= w with | Lt => Bd (n - 1) | _ => Bd (S (n - 1)) end = Bd n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
w, n: nat
neq: Bd n <> Fr x
ineqrw: (n ?= w) = Gt
ineqp: n > w

match n - 1 ?= w with | Lt => Bd (n - 1) | _ => Bd (S (n - 1)) end = Bd n
compare naturals (n - 1) and w. Qed. (* LNgen 16: close_open *)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x t, ~ x ∈ free t -> '[x] (t '(ret (Fr x))) = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x t, ~ x ∈ free t -> '[x] (t '(ret (Fr x))) = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t: U LN
fresh: ~ x ∈ free t

'[x] (t '(ret (Fr x))) = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t: U LN
fresh: ~ x ∈ free t

(close x ∘ open (ret (Fr x))) t = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t: U LN
fresh: ~ x ∈ free t

(close x ∘ mapd (open_LN_loc (Fr x))) t = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t: U LN
fresh: ~ x ∈ free t

(mapd (close_loc x) ∘ mapd (open_LN_loc (Fr x))) t = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t: U LN
fresh: ~ x ∈ free t

mapd (close_loc x ⋆1 open_LN_loc (Fr x)) t = t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t: U LN
fresh: ~ x ∈ free t

forall (e : nat) (a : LN), (e, a) ∈d t -> (close_loc x ⋆1 open_LN_loc (Fr x)) (e, a) = a
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t: U LN
fresh: ~ x ∈ free t
w: nat
l: LN
lin: (w, l) ∈d t

(close_loc x ⋆1 open_LN_loc (Fr x)) (w, l) = l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t: U LN
fresh: ~ x ∈ free t
w: nat
l: LN
lin: (w, l) ∈d t

l <> Fr x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t: U LN
fresh: ~ x ∈ free t
w: nat
l: LN
lin: (w, l) ∈d t
H: l <> Fr x
(close_loc x ⋆1 open_LN_loc (Fr x)) (w, l) = l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t: U LN
fresh: ~ x ∈ free t
w: nat
l: LN
lin: (w, l) ∈d t

l <> Fr x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t: U LN
fresh: ~ x ∈ free t
w: nat
l: LN
lin: (w, l) ∈d t

Fr x <> l
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t: U LN
fresh: ~ x ∈ free t
w: nat
l: LN
lin: l ∈ t

Fr x <> l
eauto using (ninf_in_neq (T := T)).
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t: U LN
fresh: ~ x ∈ free t
w: nat
l: LN
lin: (w, l) ∈d t
H: l <> Fr x

(close_loc x ⋆1 open_LN_loc (Fr x)) (w, l) = l
now apply close_open_local. Qed. (** ** Opening and local closure *) (**************************************************************************)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall n t u, LC u -> LCn n t -> LCn (n - 1) (t '(u))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall n t u, LC u -> LCn n t -> LCn (n - 1) (t '(u))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: LC u
lct: LCn n t

LCn (n - 1) (t '(u))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (w, l) ∈d t -> lc_loc n (w, l)

forall w l, (w, l) ∈d t '(u) -> lc_loc (n - 1) (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (w, l) ∈d t -> lc_loc n (w, l)
w: nat
l: LN
Hin: (w, l) ∈d t '(u)

lc_loc (n - 1) (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (w, l) ∈d t -> lc_loc n (w, l)
w: nat
l: LN
Hin: exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d open_loc u (n1, l1) /\ w = n1 ● n2

lc_loc (n - 1) (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (w, l) ∈d t -> lc_loc n (w, l)
w: nat
l: LN
n1, n2: nat
l1: LN
h1: (n1, l1) ∈d t
h2: (n2, l) ∈d open_loc u (n1, l1)
h3: w = n1 ● n2

lc_loc (n - 1) (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (w, l) ∈d t -> lc_loc n (w, l)
w: nat
l: LN
n1, n2: nat
n0: atom
h1: (n1, Fr n0) ∈d t
h2: (n2, l) ∈d open_loc u (n1, Fr n0)
h3: w = n1 ● n2

lc_loc (n - 1) (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (w, l) ∈d t -> lc_loc n (w, l)
w: nat
l: LN
n1, n2, n0: nat
h1: (n1, Bd n0) ∈d t
h2: (n2, l) ∈d open_loc u (n1, Bd n0)
h3: w = n1 ● n2
lc_loc (n - 1) (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (w, l) ∈d t -> lc_loc n (w, l)
w: nat
l: LN
n1, n2: nat
n0: atom
h1: (n1, Fr n0) ∈d t
h2: (n2, l) ∈d open_loc u (n1, Fr n0)
h3: w = n1 ● n2

lc_loc (n - 1) (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (w, l) ∈d t -> lc_loc n (w, l)
w: nat
l: LN
n1, n2: nat
n0: atom
h1: (n1, Fr n0) ∈d t
h2: (n2, l) ∈d ret (Fr n0)
h3: w = n1 ● n2

lc_loc (n - 1) (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (w, l) ∈d t -> lc_loc n (w, l)
w: nat
l: LN
n1, n2: nat
n0: atom
h1: (n1, Fr n0) ∈d t
h2: n2 = Ƶ /\ l = Fr n0
h3: w = n1 ● n2

lc_loc (n - 1) (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (w, l) ∈d t -> lc_loc n (w, l)
n1: nat
n0: atom
h1: (n1, Fr n0) ∈d t

lc_loc (n - 1) (n1 ● Ƶ, Fr n0)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (w, l) ∈d t -> lc_loc n (w, l)
n1: nat
n0: atom
h1: (n1, Fr n0) ∈d t

True
trivial.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (w, l) ∈d t -> lc_loc n (w, l)
w: nat
l: LN
n1, n2, n0: nat
h1: (n1, Bd n0) ∈d t
h2: (n2, l) ∈d open_loc u (n1, Bd n0)
h3: w = n1 ● n2

lc_loc (n - 1) (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
n1, n0: nat
lct: lc_loc n (n1, Bd n0)
w: nat
l: LN
n2: nat
h1: (n1, Bd n0) ∈d t
h2: (n2, l) ∈d open_loc u (n1, Bd n0)
h3: w = n1 ● n2

lc_loc (n - 1) (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
n1, n0: nat
lct: lc_loc n (n1, Bd n0)
w: nat
l: LN
n2: nat
h1: (n1, Bd n0) ∈d t
h2: (n2, l) ∈d match n0 ?= n1 with | Eq => u | Lt => ret (Bd n0) | Gt => ret (Bd (n0 - 1)) end
h3: w = n1 ● n2

lc_loc (n - 1) (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
n1, n0: nat
lct: lc_loc n (n1, Bd n0)
w: nat
l: LN
n2: nat
h1: (n1, Bd n0) ∈d t
h2: (n2, l) ∈d ret (Bd n0)
h3: w = n1 ● n2
ineqrw: (n0 ?= n1) = Lt
ineqp: n0 < n1

lc_loc (n - 1) (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
n1: nat
lct: lc_loc n (n1, Bd n1)
l: LN
n2: nat
h1: (n1, Bd n1) ∈d t
h2: (n2, l) ∈d u
ineqrw: (n1 ?= n1) = Eq
lc_loc (n - 1) (n1 ● n2, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
n1, n0: nat
lct: lc_loc n (n1, Bd n0)
w: nat
l: LN
n2: nat
h1: (n1, Bd n0) ∈d t
h2: (n2, l) ∈d ret (Bd (n0 - 1))
h3: w = n1 ● n2
ineqrw: (n0 ?= n1) = Gt
ineqp: n0 > n1
lc_loc (n - 1) (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
n1, n0: nat
lct: lc_loc n (n1, Bd n0)
w: nat
l: LN
n2: nat
h1: (n1, Bd n0) ∈d t
h2: (n2, l) ∈d ret (Bd n0)
h3: w = n1 ● n2
ineqrw: (n0 ?= n1) = Lt
ineqp: n0 < n1

lc_loc (n - 1) (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
n1, n0: nat
lct: lc_loc n (n1, Bd n0)
h1: (n1, Bd n0) ∈d t
ineqrw: (n0 ?= n1) = Lt
ineqp: n0 < n1

lc_loc (n - 1) (n1 ● Ƶ, Bd n0)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
n1, n0: nat
lct: lc_loc n (n1, Bd n0)
h1: (n1, Bd n0) ∈d t
ineqrw: (n0 ?= n1) = Lt
ineqp: n0 < n1

n0 < (n1 ● Ƶ) + (n - 1)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
n1, n0: nat
lct: lc_loc n (n1, Bd n0)
h1: (n1, Bd n0) ∈d t
ineqrw: (n0 ?= n1) = Lt
ineqp: n0 < n1

n0 < n1 + 0 + (n - 1)
lia.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
n1: nat
lct: lc_loc n (n1, Bd n1)
l: LN
n2: nat
h1: (n1, Bd n1) ∈d t
h2: (n2, l) ∈d u
ineqrw: (n1 ?= n1) = Eq

lc_loc (n - 1) (n1 ● n2, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
l: LN
n2: nat
lcu: lc_loc 0 (n2, l)
n1: nat
lct: lc_loc n (n1, Bd n1)
h1: (n1, Bd n1) ∈d t
h2: (n2, l) ∈d u
ineqrw: (n1 ?= n1) = Eq

lc_loc (n - 1) (n1 ● n2, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
l: LN
n2: nat
lcu: match l with | Fr _ => True | Bd n => n < n2 + 0 end
n1: nat
lct: n1 < n1 + n
h1: (n1, Bd n1) ∈d t
h2: (n2, l) ∈d u
ineqrw: (n1 ?= n1) = Eq

match l with | Fr _ => True | Bd n0 => n0 < (n1 ● n2) + (n - 1) end
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
n0, n2: nat
lcu: n0 < n2 + 0
n1: nat
lct: n1 < n1 + n
h1: (n1, Bd n1) ∈d t
h2: (n2, Bd n0) ∈d u
ineqrw: (n1 ?= n1) = Eq

n0 < (n1 ● n2) + (n - 1)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
n0, n2: nat
lcu: n0 < n2 + 0
n1: nat
lct: n1 < n1 + n
h1: (n1, Bd n1) ∈d t
h2: (n2, Bd n0) ∈d u
ineqrw: (n1 ?= n1) = Eq

n0 < n1 + n2 + (n - 1)
lia.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
n1, n0: nat
lct: lc_loc n (n1, Bd n0)
w: nat
l: LN
n2: nat
h1: (n1, Bd n0) ∈d t
h2: (n2, l) ∈d ret (Bd (n0 - 1))
h3: w = n1 ● n2
ineqrw: (n0 ?= n1) = Gt
ineqp: n0 > n1

lc_loc (n - 1) (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
n1, n0: nat
lct: lc_loc n (n1, Bd n0)
w: nat
l: LN
n2: nat
h1: (n1, Bd n0) ∈d t
h2: n2 = Ƶ /\ l = Bd (n0 - 1)
h3: w = n1 ● n2
ineqrw: (n0 ?= n1) = Gt
ineqp: n0 > n1

lc_loc (n - 1) (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
n1, n0: nat
lct: lc_loc n (n1, Bd n0)
h1: (n1, Bd n0) ∈d t
ineqrw: (n0 ?= n1) = Gt
ineqp: n0 > n1

lc_loc (n - 1) (n1 ● Ƶ, Bd (n0 - 1))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
lcu: forall w l, (w, l) ∈d u -> match l with | Fr _ => True | Bd n => n < w + 0 end
n1, n0: nat
lct: n0 < n1 + n
h1: (n1, Bd n0) ∈d t
ineqrw: (n0 ?= n1) = Gt
ineqp: n0 > n1

n0 - 1 < (n1 ● Ƶ) + (n - 1)
unfold_lia. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall n t u, n > 0 -> LC u -> LCn (n - 1) (t '(u)) -> LCn n t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall n t u, n > 0 -> LC u -> LCn (n - 1) (t '(u)) -> LCn n t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: LC u
lct: LCn (n - 1) (t '(u))

LCn n t
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (w, l) ∈d t '(u) -> lc_loc (n - 1) (w, l)

forall w l, (w, l) ∈d t -> lc_loc n (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (w, l) ∈d t '(u) -> lc_loc (n - 1) (w, l)
w: nat
l: LN
Hin: (w, l) ∈d t

lc_loc n (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, l)
w: nat
l: LN
Hin: (w, l) ∈d t

lc_loc n (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, l)
w: nat
n0: atom
Hin: (w, Fr n0) ∈d t

lc_loc n (w, Fr n0)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, l)
w, n0: nat
Hin: (w, Bd n0) ∈d t
lc_loc n (w, Bd n0)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, l)
w: nat
n0: atom
Hin: (w, Fr n0) ∈d t

lc_loc n (w, Fr n0)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, l)
w: nat
n0: atom
Hin: (w, Fr n0) ∈d t

True
trivial.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, l)
w, n0: nat
Hin: (w, Bd n0) ∈d t

lc_loc n (w, Bd n0)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, l)
w, n0: nat
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Lt
ineqp: n0 < w

lc_loc n (w, Bd n0)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, l)
w: nat
ineqrw: (w ?= w) = Eq
Hin: (w, Bd w) ∈d t
lc_loc n (w, Bd w)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, l)
w, n0: nat
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Gt
ineqp: n0 > w
lc_loc n (w, Bd n0)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, l)
w, n0: nat
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Lt
ineqp: n0 < w

lc_loc n (w, Bd n0)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
w, n0: nat
lct: (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd n0) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, Bd n0)
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Lt
ineqp: n0 < w

lc_loc n (w, Bd n0)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
w, n0: nat
lct: (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd n0) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, Bd n0)
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Lt
ineqp: n0 < w

lc_loc (n - 1) (w, Bd n0) -> lc_loc n (w, Bd n0)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
w, n0: nat
lct: (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd n0) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, Bd n0)
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Lt
ineqp: n0 < w
exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd n0) ∈d open_loc u (n1, l1) /\ w = n1 ● n2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
w, n0: nat
lct: (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd n0) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, Bd n0)
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Lt
ineqp: n0 < w

lc_loc (n - 1) (w, Bd n0) -> lc_loc n (w, Bd n0)
cbn; unfold_lia.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
w, n0: nat
lct: (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd n0) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, Bd n0)
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Lt
ineqp: n0 < w

exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd n0) ∈d open_loc u (n1, l1) /\ w = n1 ● n2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
w, n0: nat
lct: (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd n0) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, Bd n0)
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Lt
ineqp: n0 < w

exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd n0) ∈d open_loc u (n1, l1) /\ w = n1 ● n2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
w, n0: nat
lct: (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd n0) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, Bd n0)
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Lt
ineqp: n0 < w

(w, Bd n0) ∈d t /\ (Ƶ, Bd n0) ∈d open_loc u (w, Bd n0) /\ w = w ● Ƶ
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
w, n0: nat
lct: (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd n0) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, Bd n0)
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Lt
ineqp: n0 < w

(Ƶ, Bd n0) ∈d open_loc u (w, Bd n0) /\ w = w ● Ƶ
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
w, n0: nat
lct: (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd n0) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, Bd n0)
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Lt
ineqp: n0 < w

(Ƶ, Bd n0) ∈d match n0 ?= w with | Eq => u | Lt => ret (Bd n0) | Gt => ret (Bd (n0 - 1)) end /\ w = w ● Ƶ
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
w, n0: nat
lct: (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd n0) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, Bd n0)
Hin: (w, Bd n0) ∈d t
ineqrw: Lt = Lt
ineqp: n0 < w
ineqrw0: (n0 ?= w) = Lt
ineqp0: n0 < w

(Ƶ, Bd n0) ∈d ret (Bd n0) /\ w = w ● Ƶ
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
w, n0: nat
lct: (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd n0) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, Bd n0)
Hin: (w, Bd n0) ∈d t
ineqrw: Lt = Lt
ineqp: n0 < w
ineqrw0: (n0 ?= w) = Lt
ineqp0: n0 < w

(Ƶ = Ƶ /\ Bd n0 = Bd n0) /\ w = w ● Ƶ
now simpl_monoid. }
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, l)
w: nat
ineqrw: (w ?= w) = Eq
Hin: (w, Bd w) ∈d t

lc_loc n (w, Bd w)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, l)
w: nat
ineqrw: (w ?= w) = Eq
Hin: (w, Bd w) ∈d t

w < w + n
unfold_lia.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, l)
w, n0: nat
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Gt
ineqp: n0 > w

lc_loc n (w, Bd n0)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
lct: forall w l, (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, l) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, l)
w, n0: nat
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Gt
ineqp: n0 > w

n0 < w + n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
w, n0: nat
lct: (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd (n0 - 1)) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, Bd (n0 - 1))
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Gt
ineqp: n0 > w

n0 < w + n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
w, n0: nat
lct: (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd (n0 - 1)) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, Bd (n0 - 1))
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Gt
ineqp: n0 > w

lc_loc (n - 1) (w, Bd (n0 - 1)) -> n0 < w + n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
w, n0: nat
lct: (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd (n0 - 1)) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, Bd (n0 - 1))
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Gt
ineqp: n0 > w
exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd (n0 - 1)) ∈d open_loc u (n1, l1) /\ w = n1 ● n2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
w, n0: nat
lct: (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd (n0 - 1)) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, Bd (n0 - 1))
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Gt
ineqp: n0 > w

lc_loc (n - 1) (w, Bd (n0 - 1)) -> n0 < w + n
cbn; unfold_lia.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
w, n0: nat
lct: (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd (n0 - 1)) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, Bd (n0 - 1))
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Gt
ineqp: n0 > w

exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd (n0 - 1)) ∈d open_loc u (n1, l1) /\ w = n1 ● n2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
w, n0: nat
lct: (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd (n0 - 1)) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, Bd (n0 - 1))
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Gt
ineqp: n0 > w

exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd (n0 - 1)) ∈d open_loc u (n1, l1) /\ w = n1 ● n2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
w, n0: nat
lct: (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd (n0 - 1)) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, Bd (n0 - 1))
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Gt
ineqp: n0 > w

(w, Bd n0) ∈d t /\ (Ƶ, Bd (n0 - 1)) ∈d open_loc u (w, Bd n0) /\ w = w ● Ƶ
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
w, n0: nat
lct: (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd (n0 - 1)) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, Bd (n0 - 1))
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Gt
ineqp: n0 > w

(Ƶ, Bd (n0 - 1)) ∈d open_loc u (w, Bd n0) /\ w = w ● Ƶ
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
w, n0: nat
lct: (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd (n0 - 1)) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, Bd (n0 - 1))
Hin: (w, Bd n0) ∈d t
ineqrw: (n0 ?= w) = Gt
ineqp: n0 > w

(Ƶ, Bd (n0 - 1)) ∈d match n0 ?= w with | Eq => u | Lt => ret (Bd n0) | Gt => ret (Bd (n0 - 1)) end /\ w = w ● Ƶ
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
w, n0: nat
lct: (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd (n0 - 1)) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, Bd (n0 - 1))
Hin: (w, Bd n0) ∈d t
ineqrw: Gt = Gt
ineqp: n0 > w
ineqrw0: (n0 ?= w) = Gt
ineqp0: n0 > w

(Ƶ, Bd (n0 - 1)) ∈d ret (Bd (n0 - 1)) /\ w = w ● Ƶ
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
u: T LN
ngt: n > 0
lcu: forall w l, (w, l) ∈d u -> lc_loc 0 (w, l)
w, n0: nat
lct: (exists n1 n2 l1, (n1, l1) ∈d t /\ (n2, Bd (n0 - 1)) ∈d open_loc u (n1, l1) /\ w = n1 ● n2) -> lc_loc (n - 1) (w, Bd (n0 - 1))
Hin: (w, Bd n0) ∈d t
ineqrw: Gt = Gt
ineqp: n0 > w
ineqrw0: (n0 ?= w) = Gt
ineqp0: n0 > w

(Ƶ = Ƶ /\ Bd (n0 - 1) = Bd (n0 - 1)) /\ w = w ● Ƶ
now simpl_monoid. } Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall n t u, n > 0 -> LC u -> LCn n t <-> LCn (n - 1) (t '(u))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall n t u, n > 0 -> LC u -> LCn n t <-> LCn (n - 1) (t '(u))
intros; intuition (eauto using open_lcn_1, open_lcn_2). Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall n t x, n > 0 -> LCn n t <-> LCn (n - 1) (t '(ret (Fr x)))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall n t x, n > 0 -> LCn n t <-> LCn (n - 1) (t '(ret (Fr x)))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
x: atom
H: n > 0

LCn n t <-> LCn (n - 1) (t '(ret (Fr x)))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
x: atom
H: n > 0

n > 0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
x: atom
H: n > 0
LC (ret (Fr x))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
x: atom
H: n > 0

LC (ret (Fr x))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
x: atom
H: n > 0

forall w l, (w, l) ∈d ret (Fr x) -> lc_loc 0 (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
x: atom
H: n > 0
w: nat
l: LN
hin: (w, l) ∈d ret (Fr x)

lc_loc 0 (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
x: atom
H: n > 0
w: nat
l: LN
hin: w = Ƶ /\ l = Fr x

lc_loc 0 (w, l)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
x: atom
H: n > 0

lc_loc 0 (Ƶ, Fr x)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
n: nat
t: U LN
x: atom
H: n > 0

True
trivial. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u, LC u -> LCn 1 t <-> LC (t '(u))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t u, LC u -> LCn 1 t <-> LC (t '(u))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
H: LC u

LCn 1 t <-> LC (t '(u))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
H: LC u

LCn 1 t <-> LCn 0 (t '(u))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
H: LC u

LCn (S (1 - 1)) t <-> LCn (1 - 1) (t '(u))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
u: T LN
H: LC u

LCn (S (1 - 1)) t <-> LCn 1 t
reflexivity. Qed.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x, LCn 1 t <-> LC (t '(ret (Fr x)))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall t x, LCn 1 t <-> LC (t '(ret (Fr x)))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom

LCn 1 t <-> LC (t '(ret (Fr x)))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom

LCn 1 t <-> LCn 0 (t '(ret (Fr x)))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom

LCn (S (1 - 1)) t <-> LCn (1 - 1) (t '(ret (Fr x)))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
t: U LN
x: atom

LCn (S (1 - 1)) t <-> LCn 1 t
reflexivity. Qed. (** ** Injectivity of opening *) (******************************************************************************) (* LNgen 17: open-inj *)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x (t u : U LN), x `notin` (FV t ∪ FV u) -> t '(ret (Fr x)) = u '(ret (Fr x)) -> t = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x (t u : U LN), x `notin` (FV t ∪ FV u) -> t '(ret (Fr x)) = u '(ret (Fr x)) -> t = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: t '(ret (Fr x)) = u '(ret (Fr x))

t = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u

t = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u

forall (e : nat) (a1 a2 : LN), (e, a1) ∈d t -> (e, a2) ∈d u -> open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2) -> a1 = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)

a1 = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)

open_loc (ret (Fr x)) (e, a1) = open_loc (ret (Fr x)) (e, a2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)
Heq_loc2: open_loc (ret (Fr x)) (e, a1) = open_loc (ret (Fr x)) (e, a2)
a1 = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)

open_loc (ret (Fr x)) (e, a1) = open_loc (ret (Fr x)) (e, a2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)

(ret ∘ open_LN_loc (Fr x)) (e, a1) = (ret ∘ open_LN_loc (Fr x)) (e, a2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)

ret (open_LN_loc (Fr x) (e, a1)) = ret (open_LN_loc (Fr x) (e, a2))
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)

open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)

open_LN_loc (Fr x) (e, a2) = open_LN_loc (Fr x) (e, a2)
reflexivity.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)
Heq_loc2: open_loc (ret (Fr x)) (e, a1) = open_loc (ret (Fr x)) (e, a2)

a1 = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)
Heq_loc2: open_loc (ret (Fr x)) (e, a1) = open_loc (ret (Fr x)) (e, a2)
Hneq: a1 <> Fr x /\ a2 <> Fr x

a1 = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)
Heq_loc2: open_loc (ret (Fr x)) (e, a1) = open_loc (ret (Fr x)) (e, a2)
a1 <> Fr x /\ a2 <> Fr x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)
Heq_loc2: open_loc (ret (Fr x)) (e, a1) = open_loc (ret (Fr x)) (e, a2)
Hneq: a1 <> Fr x /\ a2 <> Fr x

a1 = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)
Heq_loc2: open_loc (ret (Fr x)) (e, a1) = open_loc (ret (Fr x)) (e, a2)
H: a1 <> Fr x
H0: a2 <> Fr x

a1 = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: match a1 with | Fr x => Fr x | Bd n => match n ?= e with | Eq => Fr x | Lt => Bd n | Gt => Bd (n - 1) end end = match a2 with | Fr x => Fr x | Bd n => match n ?= e with | Eq => Fr x | Lt => Bd n | Gt => Bd (n - 1) end end
Heq_loc2: open_loc (ret (Fr x)) (e, a1) = open_loc (ret (Fr x)) (e, a2)
H: a1 <> Fr x
H0: a2 <> Fr x

a1 = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
n: atom
a2: LN
Hint1: (e, Fr n) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: Fr n = match a2 with | Fr x => Fr x | Bd n => match n ?= e with | Eq => Fr x | Lt => Bd n | Gt => Bd (n - 1) end end
Heq_loc2: open_loc (ret (Fr x)) (e, Fr n) = open_loc (ret (Fr x)) (e, a2)
H: Fr n <> Fr x
H0: a2 <> Fr x

Fr n = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n: nat
a2: LN
Hint1: (e, Bd n) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: match n ?= e with | Eq => Fr x | Lt => Bd n | Gt => Bd (n - 1) end = match a2 with | Fr x => Fr x | Bd n => match n ?= e with | Eq => Fr x | Lt => Bd n | Gt => Bd (n - 1) end end
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, a2)
H: Bd n <> Fr x
H0: a2 <> Fr x
Bd n = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
n: atom
a2: LN
Hint1: (e, Fr n) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: Fr n = match a2 with | Fr x => Fr x | Bd n => match n ?= e with | Eq => Fr x | Lt => Bd n | Gt => Bd (n - 1) end end
Heq_loc2: open_loc (ret (Fr x)) (e, Fr n) = open_loc (ret (Fr x)) (e, a2)
H: Fr n <> Fr x
H0: a2 <> Fr x

Fr n = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
n, n0: atom
Hint1: (e, Fr n) ∈d t
Hint2: (e, Fr n0) ∈d u
Heq_loc: Fr n = Fr n0
Heq_loc2: open_loc (ret (Fr x)) (e, Fr n) = open_loc (ret (Fr x)) (e, Fr n0)
H: Fr n <> Fr x
H0: Fr n0 <> Fr x

Fr n = Fr n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
n: atom
n0: nat
Hint1: (e, Fr n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Fr n = match n0 ?= e with | Eq => Fr x | Lt => Bd n0 | Gt => Bd (n0 - 1) end
Heq_loc2: open_loc (ret (Fr x)) (e, Fr n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Fr n <> Fr x
H0: Bd n0 <> Fr x
Fr n = Bd n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
n, n0: atom
Hint1: (e, Fr n) ∈d t
Hint2: (e, Fr n0) ∈d u
Heq_loc: Fr n = Fr n0
Heq_loc2: open_loc (ret (Fr x)) (e, Fr n) = open_loc (ret (Fr x)) (e, Fr n0)
H: Fr n <> Fr x
H0: Fr n0 <> Fr x

Fr n = Fr n0
assumption.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
n: atom
n0: nat
Hint1: (e, Fr n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Fr n = match n0 ?= e with | Eq => Fr x | Lt => Bd n0 | Gt => Bd (n0 - 1) end
Heq_loc2: open_loc (ret (Fr x)) (e, Fr n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Fr n <> Fr x
H0: Bd n0 <> Fr x

Fr n = Bd n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
n: atom
n0: nat
Hint1: (e, Fr n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Fr n = match n0 ?= e with | Eq => Fr x | Lt => Bd n0 | Gt => Bd (n0 - 1) end
Heq_loc2: open_loc (ret (Fr x)) (e, Fr n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Fr n <> Fr x
H0: Bd n0 <> Fr x

Fr n = Bd n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
n: atom
n0: nat
Hint1: (e, Fr n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Fr n = match n0 ?= e with | Eq => Fr x | Lt => Bd n0 | Gt => Bd (n0 - 1) end
Heq_loc2: open_loc (ret (Fr x)) (e, Fr n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Fr n <> Fr x
H0: Bd n0 <> Fr x

False
destruct (compare n0 e); easy. }
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n: nat
a2: LN
Hint1: (e, Bd n) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: match n ?= e with | Eq => Fr x | Lt => Bd n | Gt => Bd (n - 1) end = match a2 with | Fr x => Fr x | Bd n => match n ?= e with | Eq => Fr x | Lt => Bd n | Gt => Bd (n - 1) end end
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, a2)
H: Bd n <> Fr x
H0: a2 <> Fr x

Bd n = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n: nat
a2: LN
Hint1: (e, Bd n) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: match n ?= e with | Eq => Fr x | Lt => Bd n | Gt => Bd (n - 1) end = match a2 with | Fr x => Fr x | Bd n => match n ?= e with | Eq => Fr x | Lt => Bd n | Gt => Bd (n - 1) end end
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, a2)
H: Bd n <> Fr x
H0: a2 <> Fr x

Bd n = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n: nat
n0: atom
Hint1: (e, Bd n) ∈d t
Hint2: (e, Fr n0) ∈d u
Heq_loc: match n ?= e with | Eq => Fr x | Lt => Bd n | Gt => Bd (n - 1) end = Fr n0
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Fr n0)
H: Bd n <> Fr x
H0: Fr n0 <> Fr x

Bd n = Fr n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n, n0: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: match n ?= e with | Eq => Fr x | Lt => Bd n | Gt => Bd (n - 1) end = match n0 ?= e with | Eq => Fr x | Lt => Bd n0 | Gt => Bd (n0 - 1) end
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Bd n <> Fr x
H0: Bd n0 <> Fr x
Bd n = Bd n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n: nat
n0: atom
Hint1: (e, Bd n) ∈d t
Hint2: (e, Fr n0) ∈d u
Heq_loc: match n ?= e with | Eq => Fr x | Lt => Bd n | Gt => Bd (n - 1) end = Fr n0
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Fr n0)
H: Bd n <> Fr x
H0: Fr n0 <> Fr x

Bd n = Fr n0
compare naturals n and e; false.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n, n0: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: match n ?= e with | Eq => Fr x | Lt => Bd n | Gt => Bd (n - 1) end = match n0 ?= e with | Eq => Fr x | Lt => Bd n0 | Gt => Bd (n0 - 1) end
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Bd n <> Fr x
H0: Bd n0 <> Fr x

Bd n = Bd n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n, n0: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: match n ?= e with | Eq => Fr x | Lt => Bd n | Gt => Bd (n - 1) end = match n0 ?= e with | Eq => Fr x | Lt => Bd n0 | Gt => Bd (n0 - 1) end
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Bd n <> Fr x
H0: Bd n0 <> Fr x

Bd n = Bd n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n, n0: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Bd n = match n0 ?= e with | Eq => Fr x | Lt => Bd n0 | Gt => Bd (n0 - 1) end
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Bd n <> Fr x
H0: Bd n0 <> Fr x
ineqrw: (n ?= e) = Lt
ineqp: n < e

n = n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n0: nat
Hint1: (e, Bd e) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Fr x = match n0 ?= e with | Eq => Fr x | Lt => Bd n0 | Gt => Bd (n0 - 1) end
H: Bd e <> Fr x
Heq_loc2: open_loc (ret (Fr x)) (e, Bd e) = open_loc (ret (Fr x)) (e, Bd n0)
H0: Bd n0 <> Fr x
ineqrw: (e ?= e) = Eq
e = n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n, n0: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Bd (n - 1) = match n0 ?= e with | Eq => Fr x | Lt => Bd n0 | Gt => Bd (n0 - 1) end
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Bd n <> Fr x
H0: Bd n0 <> Fr x
ineqrw: (n ?= e) = Gt
ineqp: n > e
n = n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n, n0: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Bd n = match n0 ?= e with | Eq => Fr x | Lt => Bd n0 | Gt => Bd (n0 - 1) end
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Bd n <> Fr x
H0: Bd n0 <> Fr x
ineqrw: (n ?= e) = Lt
ineqp: n < e

n = n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n, n0: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Bd n = Bd n0
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Bd n <> Fr x
H0: Bd n0 <> Fr x
ineqrw: (n ?= e) = Lt
ineqp: n < e
ineqrw0: (n0 ?= e) = Lt
ineqp0: n0 < e

n = n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd e) ∈d u
Heq_loc: Bd n = Fr x
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd e)
H: Bd n <> Fr x
H0: Bd e <> Fr x
ineqrw: (n ?= e) = Lt
ineqp: n < e
ineqrw0: (e ?= e) = Eq
n = e
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n, n0: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Bd n = Bd (n0 - 1)
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Bd n <> Fr x
H0: Bd n0 <> Fr x
ineqrw: (n ?= e) = Lt
ineqp: n < e
ineqrw0: (n0 ?= e) = Gt
ineqp0: n0 > e
n = n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n, n0: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Bd n = Bd n0
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Bd n <> Fr x
H0: Bd n0 <> Fr x
ineqrw: (n ?= e) = Lt
ineqp: n < e
ineqrw0: (n0 ?= e) = Lt
ineqp0: n0 < e

n = n0
now inversion Heq_loc.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd e) ∈d u
Heq_loc: Bd n = Fr x
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd e)
H: Bd n <> Fr x
H0: Bd e <> Fr x
ineqrw: (n ?= e) = Lt
ineqp: n < e
ineqrw0: (e ?= e) = Eq

n = e
false.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n, n0: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Bd n = Bd (n0 - 1)
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Bd n <> Fr x
H0: Bd n0 <> Fr x
ineqrw: (n ?= e) = Lt
ineqp: n < e
ineqrw0: (n0 ?= e) = Gt
ineqp0: n0 > e

n = n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n, n0: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Bd n = Bd (n0 - 1)
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Bd n <> Fr x
H0: Bd n0 <> Fr x
ineqrw: (n ?= e) = Lt
ineqp: n < e
ineqrw0: (n0 ?= e) = Gt
ineqp0: n0 > e
H2: n = n0 - 1

n0 - 1 = n0
lia.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n0: nat
Hint1: (e, Bd e) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Fr x = match n0 ?= e with | Eq => Fr x | Lt => Bd n0 | Gt => Bd (n0 - 1) end
H: Bd e <> Fr x
Heq_loc2: open_loc (ret (Fr x)) (e, Bd e) = open_loc (ret (Fr x)) (e, Bd n0)
H0: Bd n0 <> Fr x
ineqrw: (e ?= e) = Eq

e = n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n, n0: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Bd (n - 1) = match n0 ?= e with | Eq => Fr x | Lt => Bd n0 | Gt => Bd (n0 - 1) end
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Bd n <> Fr x
H0: Bd n0 <> Fr x
ineqrw: (n ?= e) = Gt
ineqp: n > e
n = n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n0: nat
Hint1: (e, Bd e) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Fr x = match n0 ?= e with | Eq => Fr x | Lt => Bd n0 | Gt => Bd (n0 - 1) end
H: Bd e <> Fr x
Heq_loc2: open_loc (ret (Fr x)) (e, Bd e) = open_loc (ret (Fr x)) (e, Bd n0)
H0: Bd n0 <> Fr x
ineqrw: (e ?= e) = Eq

e = n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n0: nat
Hint1: (e, Bd e) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Fr x = Bd n0
H: Bd e <> Fr x
Heq_loc2: open_loc (ret (Fr x)) (e, Bd e) = open_loc (ret (Fr x)) (e, Bd n0)
H0: Bd n0 <> Fr x
ineqrw: (e ?= e) = Eq
ineqrw0: (n0 ?= e) = Lt
ineqp: n0 < e

e = n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n0: nat
Hint1: (e, Bd e) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Fr x = Bd (n0 - 1)
H: Bd e <> Fr x
Heq_loc2: open_loc (ret (Fr x)) (e, Bd e) = open_loc (ret (Fr x)) (e, Bd n0)
H0: Bd n0 <> Fr x
ineqrw: (e ?= e) = Eq
ineqrw0: (n0 ?= e) = Gt
ineqp: n0 > e
e = n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n0: nat
Hint1: (e, Bd e) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Fr x = Bd n0
H: Bd e <> Fr x
Heq_loc2: open_loc (ret (Fr x)) (e, Bd e) = open_loc (ret (Fr x)) (e, Bd n0)
H0: Bd n0 <> Fr x
ineqrw: (e ?= e) = Eq
ineqrw0: (n0 ?= e) = Lt
ineqp: n0 < e

e = n0
now inversion Heq_loc.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n0: nat
Hint1: (e, Bd e) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Fr x = Bd (n0 - 1)
H: Bd e <> Fr x
Heq_loc2: open_loc (ret (Fr x)) (e, Bd e) = open_loc (ret (Fr x)) (e, Bd n0)
H0: Bd n0 <> Fr x
ineqrw: (e ?= e) = Eq
ineqrw0: (n0 ?= e) = Gt
ineqp: n0 > e

e = n0
false.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n, n0: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Bd (n - 1) = match n0 ?= e with | Eq => Fr x | Lt => Bd n0 | Gt => Bd (n0 - 1) end
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Bd n <> Fr x
H0: Bd n0 <> Fr x
ineqrw: (n ?= e) = Gt
ineqp: n > e

n = n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n, n0: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Bd (n - 1) = match n0 ?= e with | Eq => Fr x | Lt => Bd n0 | Gt => Bd (n0 - 1) end
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Bd n <> Fr x
H0: Bd n0 <> Fr x
ineqrw: (n ?= e) = Gt
ineqp: n > e

n = n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n, n0: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Bd (n - 1) = Bd n0
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Bd n <> Fr x
H0: Bd n0 <> Fr x
ineqrw: (n ?= e) = Gt
ineqp: n > e
ineqrw0: (n0 ?= e) = Lt
ineqp0: n0 < e

n = n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd e) ∈d u
Heq_loc: Bd (n - 1) = Fr x
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd e)
H: Bd n <> Fr x
H0: Bd e <> Fr x
ineqrw: (n ?= e) = Gt
ineqp: n > e
ineqrw0: (e ?= e) = Eq
n = e
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n, n0: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Bd (n - 1) = Bd (n0 - 1)
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Bd n <> Fr x
H0: Bd n0 <> Fr x
ineqrw: (n ?= e) = Gt
ineqp: n > e
ineqrw0: (n0 ?= e) = Gt
ineqp0: n0 > e
n = n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n, n0: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Bd (n - 1) = Bd n0
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Bd n <> Fr x
H0: Bd n0 <> Fr x
ineqrw: (n ?= e) = Gt
ineqp: n > e
ineqrw0: (n0 ?= e) = Lt
ineqp0: n0 < e

n = n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n, n0: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Bd (n - 1) = Bd n0
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Bd n <> Fr x
H0: Bd n0 <> Fr x
ineqrw: (n ?= e) = Gt
ineqp: n > e
ineqrw0: (n0 ?= e) = Lt
ineqp0: n0 < e
H2: n - 1 = n0

n = n - 1
lia.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd e) ∈d u
Heq_loc: Bd (n - 1) = Fr x
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd e)
H: Bd n <> Fr x
H0: Bd e <> Fr x
ineqrw: (n ?= e) = Gt
ineqp: n > e
ineqrw0: (e ?= e) = Eq

n = e
false.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n, n0: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Bd (n - 1) = Bd (n0 - 1)
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Bd n <> Fr x
H0: Bd n0 <> Fr x
ineqrw: (n ?= e) = Gt
ineqp: n > e
ineqrw0: (n0 ?= e) = Gt
ineqp0: n0 > e

n = n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e, n, n0: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Bd n0) ∈d u
Heq_loc: Bd (n - 1) = Bd (n0 - 1)
Heq_loc2: open_loc (ret (Fr x)) (e, Bd n) = open_loc (ret (Fr x)) (e, Bd n0)
H: Bd n <> Fr x
H0: Bd n0 <> Fr x
ineqrw: (n ?= e) = Gt
ineqp: n > e
ineqrw0: (n0 ?= e) = Gt
ineqp0: n0 > e
H2: n - 1 = n0 - 1

n = n0
lia. } } }
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)
Heq_loc2: open_loc (ret (Fr x)) (e, a1) = open_loc (ret (Fr x)) (e, a2)

a1 <> Fr x /\ a2 <> Fr x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)
Heq_loc2: open_loc (ret (Fr x)) (e, a1) = open_loc (ret (Fr x)) (e, a2)

a1 <> Fr x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)
Heq_loc2: open_loc (ret (Fr x)) (e, a1) = open_loc (ret (Fr x)) (e, a2)
a2 <> Fr x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)
Heq_loc2: open_loc (ret (Fr x)) (e, a1) = open_loc (ret (Fr x)) (e, a2)

a1 <> Fr x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)
Heq_loc2: open_loc (ret (Fr x)) (e, a1) = open_loc (ret (Fr x)) (e, a2)
cut: x `notin` FV t

a1 <> Fr x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)
Heq_loc2: open_loc (ret (Fr x)) (e, a1) = open_loc (ret (Fr x)) (e, a2)
cut: ~ x ∈ free t

a1 <> Fr x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: a1 ∈ t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)
Heq_loc2: open_loc (ret (Fr x)) (e, a1) = open_loc (ret (Fr x)) (e, a2)
cut: ~ x ∈ free t

a1 <> Fr x
eapply ninf_in_neq in Hint1; eauto.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)
Heq_loc2: open_loc (ret (Fr x)) (e, a1) = open_loc (ret (Fr x)) (e, a2)

a2 <> Fr x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)
Heq_loc2: open_loc (ret (Fr x)) (e, a1) = open_loc (ret (Fr x)) (e, a2)
cut: x `notin` FV u

a2 <> Fr x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)
Heq_loc2: open_loc (ret (Fr x)) (e, a1) = open_loc (ret (Fr x)) (e, a2)
cut: ~ x ∈ free u

a2 <> Fr x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
Hnin: x `notin` (FV t ∪ FV u)
Heq: mapd (open_LN_loc (Fr x)) t = mapd (open_LN_loc (Fr x)) u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: a2 ∈ u
Heq_loc: open_LN_loc (Fr x) (e, a1) = open_LN_loc (Fr x) (e, a2)
Heq_loc2: open_loc (ret (Fr x)) (e, a1) = open_loc (ret (Fr x)) (e, a2)
cut: ~ x ∈ free u

a2 <> Fr x
eapply ninf_in_neq in Hint2; eauto. Qed. (* LNgen 18: close-inj *)
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x (t u : U LN), '[x] t = '[x] u -> t = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U

forall x (t u : U LN), '[x] t = '[x] u -> t = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u

t = u
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u

forall (e : nat) (a1 a2 : LN), (e, a1) ∈d t -> (e, a2) ∈d u -> close_loc x (e, a1) = close_loc x (e, a2) -> a1 = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: close_loc x (e, a1) = close_loc x (e, a2)

a1 = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a1, a2: LN
Hint1: (e, a1) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: match a1 with | Fr y => if x == y then Bd e else Fr y | Bd n => match n ?= e with | Lt => Bd n | _ => Bd (S n) end end = match a2 with | Fr y => if x == y then Bd e else Fr y | Bd n => match n ?= e with | Lt => Bd n | _ => Bd (S n) end end

a1 = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a2: LN
Hint1: (e, Fr x) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: (if x == x then Bd e else Fr x) = match a2 with | Fr y => if x == y then Bd e else Fr y | Bd n => match n ?= e with | Lt => Bd n | _ => Bd (S n) end end

Fr x = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a2: LN
a: atom
Hint1: (e, Fr a) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: (if x == a then Bd e else Fr a) = match a2 with | Fr y => if x == y then Bd e else Fr y | Bd n => match n ?= e with | Lt => Bd n | _ => Bd (S n) end end
H: a <> x
Fr a = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a2: LN
n: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: match n ?= e with | Lt => Bd n | _ => Bd (S n) end = match a2 with | Fr y => if x == y then Bd e else Fr y | Bd n => match n ?= e with | Lt => Bd n | _ => Bd (S n) end end
Bd n = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a2: LN
Hint1: (e, Fr x) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: (if x == x then Bd e else Fr x) = match a2 with | Fr y => if x == y then Bd e else Fr y | Bd n => match n ?= e with | Lt => Bd n | _ => Bd (S n) end end

Fr x = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a2: LN
Hint1: (e, Fr x) ∈d t
Hint2: (e, a2) ∈d u
DESTR_EQ: x = x
Heq_loc: Bd e = match a2 with | Fr y => if x == y then Bd e else Fr y | Bd n => match n ?= e with | Lt => Bd n | _ => Bd (S n) end end
DESTR_EQs: x = x

Fr x = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
Hint1: (e, Fr x) ∈d t
Hint2: (e, Fr x) ∈d u
DESTR_EQ: x = x
Heq_loc: Bd e = (if x == x then Bd e else Fr x)
DESTR_EQs: x = x

Fr x = Fr x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
Hint1: (e, Fr x) ∈d t
a: atom
Hint2: (e, Fr a) ∈d u
DESTR_EQ: x = x
Heq_loc: Bd e = (if x == a then Bd e else Fr a)
DESTR_EQs: x = x
H: a <> x
Fr x = Fr a
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
Hint1: (e, Fr x) ∈d t
n: nat
Hint2: (e, Bd n) ∈d u
DESTR_EQ: x = x
Heq_loc: Bd e = match n ?= e with | Lt => Bd n | _ => Bd (S n) end
DESTR_EQs: x = x
Fr x = Bd n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
Hint1: (e, Fr x) ∈d t
Hint2: (e, Fr x) ∈d u
DESTR_EQ: x = x
Heq_loc: Bd e = (if x == x then Bd e else Fr x)
DESTR_EQs: x = x

Fr x = Fr x
reflexivity.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
Hint1: (e, Fr x) ∈d t
a: atom
Hint2: (e, Fr a) ∈d u
DESTR_EQ: x = x
Heq_loc: Bd e = (if x == a then Bd e else Fr a)
DESTR_EQs: x = x
H: a <> x

Fr x = Fr a
compare values x and a.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
Hint1: (e, Fr x) ∈d t
n: nat
Hint2: (e, Bd n) ∈d u
DESTR_EQ: x = x
Heq_loc: Bd e = match n ?= e with | Lt => Bd n | _ => Bd (S n) end
DESTR_EQs: x = x

Fr x = Bd n
compare naturals n and e; inversion Heq_loc; lia.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a2: LN
a: atom
Hint1: (e, Fr a) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: (if x == a then Bd e else Fr a) = match a2 with | Fr y => if x == y then Bd e else Fr y | Bd n => match n ?= e with | Lt => Bd n | _ => Bd (S n) end end
H: a <> x

Fr a = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a2: LN
a: atom
Hint1: (e, Fr a) ∈d t
Hint2: (e, a2) ∈d u
DESTR_NEQ: x <> a
Heq_loc: Fr a = match a2 with | Fr y => if x == y then Bd e else Fr y | Bd n => match n ?= e with | Lt => Bd n | _ => Bd (S n) end end
H, DESTR_NEQs: a <> x

Fr a = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a: atom
Hint1: (e, Fr a) ∈d t
Hint2: (e, Fr x) ∈d u
DESTR_NEQ: x <> a
Heq_loc: Fr a = (if x == x then Bd e else Fr x)
H, DESTR_NEQs: a <> x

Fr a = Fr x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a: atom
Hint1: (e, Fr a) ∈d t
a0: atom
Hint2: (e, Fr a0) ∈d u
DESTR_NEQ: x <> a
Heq_loc: Fr a = (if x == a0 then Bd e else Fr a0)
H, DESTR_NEQs: a <> x
H0: a0 <> x
Fr a = Fr a0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a: atom
Hint1: (e, Fr a) ∈d t
n: nat
Hint2: (e, Bd n) ∈d u
DESTR_NEQ: x <> a
Heq_loc: Fr a = match n ?= e with | Lt => Bd n | _ => Bd (S n) end
H, DESTR_NEQs: a <> x
Fr a = Bd n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a: atom
Hint1: (e, Fr a) ∈d t
a0: atom
Hint2: (e, Fr a0) ∈d u
DESTR_NEQ: x <> a
Heq_loc: Fr a = (if x == a0 then Bd e else Fr a0)
H, DESTR_NEQs: a <> x
H0: a0 <> x

Fr a = Fr a0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a: atom
Hint1: (e, Fr a) ∈d t
n: nat
Hint2: (e, Bd n) ∈d u
DESTR_NEQ: x <> a
Heq_loc: Fr a = match n ?= e with | Lt => Bd n | _ => Bd (S n) end
H, DESTR_NEQs: a <> x
Fr a = Bd n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a: atom
Hint1: (e, Fr a) ∈d t
n: nat
Hint2: (e, Bd n) ∈d u
DESTR_NEQ: x <> a
Heq_loc: Fr a = match n ?= e with | Lt => Bd n | _ => Bd (S n) end
H, DESTR_NEQs: a <> x

Fr a = Bd n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a: atom
Hint1: (e, Fr a) ∈d t
n: nat
Hint2: (e, Bd n) ∈d u
DESTR_NEQ: x <> a
Heq_loc: Fr a = Bd n
H, DESTR_NEQs: a <> x
ineqrw: (n ?= e) = Lt
ineqp: n < e

a = n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a: atom
Hint1: (e, Fr a) ∈d t
Hint2: (e, Bd e) ∈d u
DESTR_NEQ: x <> a
Heq_loc: Fr a = Bd (S e)
H, DESTR_NEQs: a <> x
ineqrw: (e ?= e) = Eq
a = e
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a: atom
Hint1: (e, Fr a) ∈d t
n: nat
Hint2: (e, Bd n) ∈d u
DESTR_NEQ: x <> a
Heq_loc: Fr a = Bd (S n)
H, DESTR_NEQs: a <> x
ineqrw: (n ?= e) = Gt
ineqp: n > e
a = n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a: atom
Hint1: (e, Fr a) ∈d t
n: nat
Hint2: (e, Bd n) ∈d u
DESTR_NEQ: x <> a
Heq_loc: Fr a = Bd n
H, DESTR_NEQs: a <> x
ineqrw: (n ?= e) = Lt
ineqp: n < e

a = n
false.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a: atom
Hint1: (e, Fr a) ∈d t
Hint2: (e, Bd e) ∈d u
DESTR_NEQ: x <> a
Heq_loc: Fr a = Bd (S e)
H, DESTR_NEQs: a <> x
ineqrw: (e ?= e) = Eq

a = e
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a: atom
Hint1: (e, Fr a) ∈d t
n: nat
Hint2: (e, Bd n) ∈d u
DESTR_NEQ: x <> a
Heq_loc: Fr a = Bd (S n)
H, DESTR_NEQs: a <> x
ineqrw: (n ?= e) = Gt
ineqp: n > e
a = n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a: atom
Hint1: (e, Fr a) ∈d t
Hint2: (e, Bd e) ∈d u
DESTR_NEQ: x <> a
Heq_loc: Fr a = Bd (S e)
H, DESTR_NEQs: a <> x
ineqrw: (e ?= e) = Eq

a = e
false.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a: atom
Hint1: (e, Fr a) ∈d t
n: nat
Hint2: (e, Bd n) ∈d u
DESTR_NEQ: x <> a
Heq_loc: Fr a = Bd (S n)
H, DESTR_NEQs: a <> x
ineqrw: (n ?= e) = Gt
ineqp: n > e

a = n
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a: atom
Hint1: (e, Fr a) ∈d t
n: nat
Hint2: (e, Bd n) ∈d u
DESTR_NEQ: x <> a
Heq_loc: Fr a = Bd (S n)
H, DESTR_NEQs: a <> x
ineqrw: (n ?= e) = Gt
ineqp: n > e

a = n
false. }
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e: nat
a2: LN
n: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, a2) ∈d u
Heq_loc: match n ?= e with | Lt => Bd n | _ => Bd (S n) end = match a2 with | Fr y => if x == y then Bd e else Fr y | Bd n => match n ?= e with | Lt => Bd n | _ => Bd (S n) end end

Bd n = a2
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e, n: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Fr x) ∈d u
Heq_loc: match n ?= e with | Lt => Bd n | _ => Bd (S n) end = (if x == x then Bd e else Fr x)

Bd n = Fr x
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e, n: nat
Hint1: (e, Bd n) ∈d t
a: atom
Hint2: (e, Fr a) ∈d u
Heq_loc: match n ?= e with | Lt => Bd n | _ => Bd (S n) end = (if x == a then Bd e else Fr a)
H: a <> x
Bd n = Fr a
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e, n: nat
Hint1: (e, Bd n) ∈d t
n0: nat
Hint2: (e, Bd n0) ∈d u
Heq_loc: match n ?= e with | Lt => Bd n | _ => Bd (S n) end = match n0 ?= e with | Lt => Bd n0 | _ => Bd (S n0) end
Bd n = Bd n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e, n: nat
Hint1: (e, Bd n) ∈d t
Hint2: (e, Fr x) ∈d u
Heq_loc: match n ?= e with | Lt => Bd n | _ => Bd (S n) end = (if x == x then Bd e else Fr x)

Bd n = Fr x
compare naturals n and e; compare values x and x; inversion Heq_loc; try lia.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e, n: nat
Hint1: (e, Bd n) ∈d t
a: atom
Hint2: (e, Fr a) ∈d u
Heq_loc: match n ?= e with | Lt => Bd n | _ => Bd (S n) end = (if x == a then Bd e else Fr a)
H: a <> x

Bd n = Fr a
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e, n: nat
Hint1: (e, Bd n) ∈d t
n0: nat
Hint2: (e, Bd n0) ∈d u
Heq_loc: match n ?= e with | Lt => Bd n | _ => Bd (S n) end = match n0 ?= e with | Lt => Bd n0 | _ => Bd (S n0) end
Bd n = Bd n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e, n: nat
Hint1: (e, Bd n) ∈d t
a: atom
Hint2: (e, Fr a) ∈d u
Heq_loc: match n ?= e with | Lt => Bd n | _ => Bd (S n) end = (if x == a then Bd e else Fr a)
H: a <> x

Bd n = Fr a
compare naturals n and e; compare values x and a.
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e, n: nat
Hint1: (e, Bd n) ∈d t
n0: nat
Hint2: (e, Bd n0) ∈d u
Heq_loc: match n ?= e with | Lt => Bd n | _ => Bd (S n) end = match n0 ?= e with | Lt => Bd n0 | _ => Bd (S n0) end

Bd n = Bd n0
T: Type -> Type
Return_T: Return T
Map_T: Map T
Bind_TT: Bind T T
Traverse_T: Traverse T
Mapd_T: Mapd nat T
Bindt_TT: Bindt T T
U: Type -> Type
Bindd_T: Bindd nat T U
Mapdt_T: Mapdt nat T
Binddt_TT: Binddt nat T T
Compat_Map_Binddt0: Compat_Map_Binddt nat T T
Compat_Bind_Binddt0: Compat_Bind_Binddt nat T T
Compat_Traverse_Binddt0: Compat_Traverse_Binddt nat T T
Compat_Mapd_Binddt0: Compat_Mapd_Binddt nat T T
Compat_Bindt_Binddt0: Compat_Bindt_Binddt nat T T
Compat_Bindd_Binddt0: Compat_Bindd_Binddt nat T T
Compat_Mapdt_Binddt0: Compat_Mapdt_Binddt nat T T
Map_U: Map U
Bind_TU: Bind T U
Traverse_U: Traverse U
Mapd_U: Mapd nat U
Bindt_TU: Bindt T U
Bindd_TU: Bindd nat T U
Mapdt_U: Mapdt nat U
Binddt_TU: Binddt nat T U
Compat_Map_Binddt1: Compat_Map_Binddt nat T U
Compat_Bind_Binddt1: Compat_Bind_Binddt nat T U
Compat_Traverse_Binddt1: Compat_Traverse_Binddt nat T U
Compat_Mapd_Binddt1: Compat_Mapd_Binddt nat T U
Compat_Bindt_Binddt1: Compat_Bindt_Binddt nat T U
Compat_Bindd_Binddt1: Compat_Bindd_Binddt nat T U
Compat_Mapdt_Binddt1: Compat_Mapdt_Binddt nat T U
Monad_inst: DecoratedTraversableMonad nat T
Module_inst: DecoratedTraversableRightPreModule nat T U
x: atom
t, u: U LN
premise: '[x] t = '[x] u
e, n: nat
Hint1: (e, Bd n) ∈d t
n0: nat
Hint2: (e, Bd n0) ∈d u
Heq_loc: match n ?= e with | Lt => Bd n | _ => Bd (S n) end = match n0 ?= e with | Lt => Bd n0 | _ => Bd (S n0) end

Bd n = Bd n0
compare naturals n and e; compare naturals n0 and e; inversion Heq_loc; try lia; easy. } Qed. End locally_nameless_metatheory.